Skip to main content

Glaciers, Climate and People: Holocene Transitions in the Stubai Valley

  • Chapter
  • First Online:
Mountain Landscapes in Transition

Abstract

The Austrian Stubai Valley starts at the modern transport monument of the Europa bridge of the A13, the lowest motorway crossing of the Alps and ends way back at the ice-covered peaks of the main Alpine ridge. The glaciers released the valley floor of today’s main villages during the Early Holocene, but natural processes still are major macro-drivers of the valley’s economic development. The steepness of the slopes necessitates warning systems, technical barriers to prevent avalanches and mudflows, as well as land use planning. These are the major strategies for coping with the omnipresent natural hazards, which have shaped the valley landscape for centuries. The article presents a broad overview of glacier development and also compiles a wealth of existing studies on past and present processes from the Early Holocene to the Anthropocene. The synopsis reveals that the effects of climate change and extreme events cannot be anticipated or discussed without a profound debate of cultural practices in the various societies and that a story of transitions underlies the nearly continuous land use in the area during the last millennia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study, the term transformation is used for changes caused by an intentional and active intervention, other changes are termed transitions.

References

  • Anonymous (1825) Das Thal Stubei und dessen Bewohner. In: Beiträge zur Geschichte, Statistik, Naturkunde und Kunst von Tirol und Vorarlberg, Innsbruck, vol 1, pp 166–246. http://zeitschrift.tiroler-landesmuseen.at/index.php?mybuch=Beitraege_GS_Bd1_Jg1825&mypage=170

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Auer I, Foelsche U, Böhm R, Chimani B, Haimberger L, Kerschner H, Koinig KA, Nicolussi K, Spötl C (2014) Vergangene Klimaänderung in Österreich. Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften, Wien, pp 227–300

    Google Scholar 

  • Baedeker K (1888) Südbaiern. Tirol und Salzburg. Handbuch für Reisende, Karl Baedeker, Leipzig

    Google Scholar 

  • Baedeker K (1912) Südbayern. Tirol und Salzburg. Handbuch für Reisende, Karl Baedeker, Leipzig

    Google Scholar 

  • Bahn M, Reichstein MM, Dukes JS, Smith MD, McDowell NG (2014) Climate–biosphere interactions in a more extreme world. New Phytol 202:356–359

    Article  Google Scholar 

  • Bätzing W (2015) Zwischen Wildnis und Freizeitpark. Rotpunktverlag, Zürich

    Google Scholar 

  • CAFT 15 (2016) Erhebung alpenquerender Güter/Brenner. https://www.bmvit.gv.at/verkehr/gesamtverkehr/statistik/aqgv_15/download_caft15/caft15_stra_brenner.pdf

  • Cartwright N (1999) The dappled world. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Feng Z, Bohleber P, Ebser S, Ringena L, Schmidt M, Kersting A, Hopkins P, Hoffmann H, Fischer A, Aeschbach W, Oberthaler MK (2019) Dating glacier ice of the last millennium by quantum technology. Proc Nat Acad Sci USA 116:8781–8786

    Article  Google Scholar 

  • Festi D, Putzer A, Oeggl K (2014) Mid and late holocene land-use changes in the Ötztal Alps, territory of the neolithic iceman “Ötzi.” Quatern Int 353:17–33

    Article  Google Scholar 

  • Fischer A (2014) Snow flakes and fates: what hope is there for Alpine tourism? In: Brebbia CA, Pineda FD, Favro S (eds) Sustainable tourism VI. WIT Press, Southampton, pp 293–305

    Chapter  Google Scholar 

  • Fischer A, Seiser B, Stocker Waldhuber M, Mitterer C, Abermann J (2015) Tracing glacier changes in Austria from the little ice age to the present using a lidar-based high-resolution glacier inventory in Austria. Cryosphere 9:753–766

    Article  Google Scholar 

  • Fischer A, Helfricht K, Stocker-Waldhuber M (2016) Local reduction of decadal glacier thickness loss through mass balance management in ski resorts. Cryosphere 10:2941–2952

    Google Scholar 

  • Fischer A, Patzelt G, Achrainer M, Groß G, Lieb GK, Kellerer-Pirklbauer A, Bendler G (2018) Gletscher im Wandel: 125 Jahre Gletschermessdienst des Alpenvereins. Springer Spektrum, Berlin, Heidelberg

    Google Scholar 

  • Fliri F (1998) Naturchronik von Tirol. Beiträge zur Klimatographie von Tirol, Wagner, Innsbruck

    Google Scholar 

  • Fondevilla C, Àngels Colomer M, Fillat F, Tappeiner U (2016) Using a new PDP modelling approach for land-use and land-cover change predictions: a case study in the Stubai Valley (Central Alps). Ecol Model 322:101–114

    Article  Google Scholar 

  • Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, Van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Ramming A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21:2861–2880

    Article  Google Scholar 

  • Gatt F (1878) Dresdener Hütte im Stubai. In: Amthor E (ed) Der Alpenfreund 11, Gera

    Google Scholar 

  • Gleeson EH, Wymann von Dach S, Flint CG, Greenwood GB, Price MF, Balsiger J, Nolin A, Vanacker V (2016) Mountains of our future earth: defining priorities for mountain research—a synthesis from the 2015 Perth III conference. Mt Res Dev 36:537–548

    Google Scholar 

  • Graf L (1880) Statistik der Alpen von Deutsch-Tirol. Wagnersche Universitätsbuchhandlung, Innsbruck

    Google Scholar 

  • Gurung AB, Dach S, Price MF, Aspinall R, Balsiger J, Baron JS, Sharma E, Greenwood G, Kohler T (2012) Global change and the world’s mountains—research needs and emerging themes for sustainable development. Mt Res Dev 32:47–54

    Article  Google Scholar 

  • Helfricht K, Huss M, Fischer A, Otto J-C (2019) Calibrated ice thickness estimate for all glaciers in Austria. Frontiers Earth Sci 7:1–15. https://doi.org/10.3389/feart.2019.00068

    Article  Google Scholar 

  • Ilyashuk EA, Ilyashuk BP, Tylmann W, Koinig KA, Psenner R (2015) Biodiversity dynamics of chironomid midges in high-altitude lakes of the Alps over the past two millennia. Insect Conserv Divers 8:547–561

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW, Schlüchter C (2008) Chronology of the last glacial cycle in the European Alps. J Quaternary Sci 23:559–573

    Article  Google Scholar 

  • Jäger G (2010) Schwarzer Himmel-kalte Erde-weißer Tod. Wagner, Innsbruck

    Google Scholar 

  • Kariel HG (1989) Socio-cultural impacts of tourism in the Austrian Alps. Mt Res Dev 9:59–70

    Google Scholar 

  • Kariel HG (1993) Tourism and society in four Austrian alpine communities. Geo J 31:449–456

    Google Scholar 

  • Karl K, Ribis M (2011) Blockgletscherinventar Tirol. Mitteilungsblatt des hydrographischen Dienstes in Österreich, vol 87, Wien, pp 67–88

    Google Scholar 

  • Katalog Landnutzung Tirol (2017) Datenquelle: Land Tirol—data.tirol.gv.at, downloaded from https://www.data.gv.at/katalog/dataset/0eaa80ce-5156-4043-aeab-77f2b24b76b5

  • Katalog Orthophoto Tirol Datenquelle: Land Tirol—data.tirol.gv.at, downloaded from https://www.data.gv.at/katalog/dataset/35691b6c-9ed7-4517-b4b3-688b0569729a

  • Katalog DEM Tirol Datenquelle: Land Tirol—data.tirol.gv.at, downloaded from https://www.data.gv.at/katalog/dataset/0454f5f3-1d8c-464e-847d-541901eb021a

  • Kinzl H (1929) Beiträge zur Geschichte der Gletscherschwankungen in den Ostalpen. Z. Gletscherkde 17:66–121

    Google Scholar 

  • Kinzl H (1949) Formenkundliche Beobachtungen im Vorfeld der Alpengletscher. Veröff. Mus. Ferdinandeum 26:61–82

    Google Scholar 

  • Krösbacher R (2004) Fundtopographie des nördlichen Wipptales, Diploma Thesis, University of Innsbruck

    Google Scholar 

  • Kutschera W, Patzelt G, Wild EM, Haas-Jettmar B, Kofler W, Lippert A, Oeggl K, Pak E, Priller A, Steier P, Wahlmüller-Oeggl N, Zanesco A (2014) Evidence for early human presence at high altitudes in the Ötztal Alps. Radiocarbon 56:923–947

    Article  Google Scholar 

  • Franziszeische Landesaufnahme (1816–1821) https://maps.tirol.gv.at/HIK/TIRIS

  • Leitinger G, Ruggenthaler R, Hammerle A, Lavorel S, Schirpke U, Clement JC, Lamarque P, Obojes N, Tappeiner U (2015) Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps. Ecohydrology 8:1600–1613

    Article  Google Scholar 

  • Messerli B (2012) Global change and the world’s mountains. Mt Res Dev 32:55–63

    Article  Google Scholar 

  • Patzelt G (2013) Datierung von Feuerstellen in prähistorischen Hirtenhütten im Waldgrenzbereich ostalpiner Gebirgsgruppen. Praearchos 4: 38–43

    Google Scholar 

  • Patzelt G (2016) Das Bunte Moor in der Oberfernau (Stubaier Alpen, Tirol)—eine neu bearbeitete Schlüsselstelle für die Kenntnis der nacheiszeitlichen Gletscherschwankungen der Ostalpen—Jahrbuch der geologischen Bundesanstalt vol 156, pp 97–107

    Google Scholar 

  • Patzelt G (2019) Gletscher: Klimazeugen von der Eiszeit bis zur Gegenwart. Hatje Cantz, Berlin

    Google Scholar 

  • Price M, Byers A, Friend D, Kohler T, Price L (eds) (2013) Mountain geography: physical and human dimensions. University of California Press, Berkeley

    Google Scholar 

  • Punz W, Sieghardt H, Maier R, Engenhart M, Christian E (2005) Kaltlöcher im Ostalpenraum. Verh Der Zoologisch-Botanischen Ges Österr 142:27–45

    Google Scholar 

  • Reiskopf B (2018) Ereignisdokumentation ausgewählter Murenereignisse im Stubaital—Analyse und Interpretation. Diplomarbeit/Masterarbeit—Institut für alpine Naturgefahren (IAN), BOKU-Universität für Bodenkultur, Wien

    Google Scholar 

  • Schäfer D, Bertola S, Pawlik A, Geitner C, Waroszewski J, Bussemer S (2016) The landscape-archaeological Ullafelsen project (Tyrol, Austria). Preistoria Alpina 48:29–38

    Google Scholar 

  • Scharr K, Steinicke E (eds) (2011) Tourismus und Gletscherschigebiete in Tirol. Eine vergleichende geographische Analyse. Innsbruck Univ Press, Innsbruck

    Google Scholar 

  • Schönbergstraße (1830) https://maps.tirol.gv.at/HIK/

  • Seguinot J, Ivy-Ochs S, Jouvet G, Huss M, Funk M, Preusser F (2018) Modelling last glacial cycle ice dynamics in the Alps. Cryosphere 12:3265–3285

    Article  Google Scholar 

  • Senarclens-Grancy W (1938) Die Gliederung der stadialen Moränen im Stubaital. Jahrb der Geologischen Bundesanst 88:23–24

    Google Scholar 

  • Severa C, Verhoeven F, Doneus M, Draganits E (2018) Surfaces from the visual past: recovering high-resolution terrain data from historic aerial imagery for multitemporal landscape analysis. J Archaeol Method Theory 25:611–642

    Article  Google Scholar 

  • Srbik RV (1929) Bergbau in Tirol und Vorarlberg in Vergangenheit und Gegenwart. Berichte des naturwissenschaftlich-medizinischen Vereines Innsbruck vol 41, pp 118–279

    Google Scholar 

  • Staffler JJ (1842) Tirol und Vorarlberg, topographisch, mit geschichtlichen Bemerkungen. Felician Rauch, Innsbruck

    Google Scholar 

  • Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  Google Scholar 

  • Stolz O (1955) Deutsche Zolltarife des Mittelalters und der Neuzeit. Steiner, Wiesbaden

    Google Scholar 

  • Land Tirol (2001) Verkehr in Tirol—Bericht 2000. Sachgebiet Verkehrsplanung. Amt der Tiroler Landesregierung, Verkehr und Strasse, Innsbruck. https://www.tirol.gv.at/fileadmin/themen/verkehr/service/publikationen/downloads/VB_2000_netz.pdf

  • Land Tirol (2018) Verkehr in Tirol—Bericht 2017. Sachgebiet Verkehrsplanung. Amt der Tiroler Landesregierung, Verkehr und Strasse, Innsbruck. https://www.tirol.gv.at/fileadmin/themen/verkehr/verkehrsplanung/downloads/verkehrsberichte/VB_2017_web.pdf

  • Töchterle KH (1991) Stubai. Tyrolia, Innsbruck-Wien

    Google Scholar 

  • United Nations (2015) Transforming our world: The 2030 agenda for sustainable development, A/RES/70/1, sustainabledevelopment.un.org, https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=2125&menu=1515, downloaded 29.07.2019

  • Von Scheffer C, Lange A, De Vleeschouwer F, Schrautzer J, Unkel I (2019) 6200 years of human activities and environmental change in the northern central Alps. E&G Quaternary Sci J 68:13–28

    Article  Google Scholar 

  • Wakonigg H (1996) Unterkühlte Schutthalden. In: Beiträge zur Permafrostforschung in Österreich. Arb Aus d Inst f Geogr d Univ Graz 33:209–223

    Google Scholar 

  • Walser C, Lambers K (2012) Human activity in the Silvretta massif and climatic developments throughout the holocene. Landscape archaeology. Berlin, 6. 8 Jun 2012. Jun 2012. In: Bebermaier W et al (ed) Landscape archaeology: proceedings of the international conference held in Berlin, 6th–8th June 2012. Berlin: Exzellenzcluster, pp 55–62

    Google Scholar 

  • Whitehead M (2014) Environmental transformations. A Geography of the Anthropocene, Routledge, London

    Book  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge Univ Press, Cambridge-New York

    Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:13504–13508

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Federal Government of Tyrol for providing the geodata via the Open Government Data (OGD) Portal.

Author information

Authors and Affiliations

Authors

Contributions

AF designed the study, did the analysis, wrote the text and compiled the Figures. LF and AJ helped with mapping the late glacial stadials, KH mapped GI 5, H.H. did the radiocarbon dating of the charcoal layer in Schaufelferner, and E.-M. W. did the radiocarbon dating of all other samples.

Corresponding author

Correspondence to Andrea Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, A., Felbauer, L., Janicke, A., Helfricht, K., Hoffmann, H., Wild, EM. (2022). Glaciers, Climate and People: Holocene Transitions in the Stubai Valley. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_9

Download citation

Publish with us

Policies and ethics