Skip to main content

Temporal Variability of the Satopanth Glacier Facies at Sub-pixel Scale, Garhwal Himalaya, India

  • Chapter
  • First Online:
Mountain Landscapes in Transition

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

Growing concern about climate-related glacier change underscores the need to quantify the temporal changes in glacier facies. Classification of glacier facies and assessing their temporal area changes are among the key applications of optical remote sensing in cryosphere. High radiometric resolution (HRR) optical data have an added advantage of overcoming the snow-saturation problem, sometimes observed in medium-to-high-resolution optical sensors. Sub-pixel classification is also known to retrieve the accurate landscape area and addresses the mixed pixel problem in most of the HRR data. Therefore, this paper utilizes the support vector machine (SVM)-based sub-pixel classification approach on bi-temporal HRR data to determine the variability in the surface facies of the Satopanth glacier (SPG), Central Himalaya. Considering the limitations of spectral data in classification, both input Advanced Wide Field Sensor (AWiFS) and reference fine multispectral instrument (MSI) data were aided with the ancillary data like terrain factors, thermal data, band ratios, spectral indices and texture measures. Sub-pixel estimates of SPG facies derived from input AWiFS 2016 image showed good agreement (r >0.7) with their reference MSI-derived estimates. Significant variations were observed in the sub-pixel estimates of SPG facies during the 11-year period (2005–2016). A minimum of ~2% reduction was observed in fresh and slightly metamorphosed snow (FS) area, whereas ice facies showed maximum shrinkage in area (~16%). The maximum expansion of ~8% and ~7% was observed for supraglacial debris (SGD) and ice-mixed debris (IMD), respectively. Wet-snow (WS) and firn coverages slightly increased by ~2 and ~1%, respectively. These changes correspond well with the meteorological data of the SPG obtained from Climate Research Unit Time Series (CRU TS) v.4.01 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alifu H, Johnson B, Tateishi R (2016) Delineation of debris-covered glaciers based on a combination of geomorphometric parameters and a TIR/NIR/SWIR Band Ratio. IEEE J Sel Topics Appl Earth Observ Remote Sens 9(2):781–792

    Article  Google Scholar 

  • Ali I, Shukla A, Romshoo SA (2017) Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology 284:115–129

    Google Scholar 

  • Arora MK, Shukla A, Gupta RP (2011) Digital image information extraction techniques for snow cover mapping from remote sensing data. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Encyclopedia of earth sciences series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_498

  • Bhambri R, Bolch T, Chaujar RK (2011) Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. Int J Remote Sens 32(23):8095–8119

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Sam L, Singh MK, Singh S, Kumar R (2015) Applicability of landsat 8 data for characterizing glacier facies and supraglacial debris. Int J Appl Earth Obs Geoinf 38:51–64

    Article  Google Scholar 

  • Bolch T, Buchroithner M, Pieczonka T, Kunert A (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using corona, landsat TM and ASTER data. J Glaciol 54(187):592–600

    Article  Google Scholar 

  • Çiftçi BB, Kuter S, Akyürek Z, Weber GW (2017) Fractional snow cover mapping by artificial neural networks and support vector machines. ISPRS Ann Photogrammetry Remote Sens Spatial Inf Sci 4:179

    Article  Google Scholar 

  • Czyzowska-Wisniewski EH, van Leeuwen WJ, Hirschboeck KK, Marsh SE, Wisniewski WT (2015) Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network. Remote Sens Environ 156:403–417

    Article  Google Scholar 

  • Fujita K (2008) Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet Sci Lett 276(1–2):14–19

    Article  Google Scholar 

  • Gupta RP, Ghosh A, Haritashya UK (2007) Empirical relationship between near-IR reflectance of melting seasonal snow and environmental temperature in a Himalayan basin. Remote Sens Environ 107(3):402–413

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya: geological observations of the Swiss Expedition, 1936. Mem Soc Helv Sci Nat 73(1):76–78

    Google Scholar 

  • Huang C, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749

    Article  Google Scholar 

  • Jawak SD, Wankhede SF, Luis AJ (2018) Exploration of glacier surface facies mapping techniques using very high resolution worldview-2 satellite data. Multi Digital Publishing Inst Proc 2(7):339

    Google Scholar 

  • Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf 11(5):352–359

    Article  Google Scholar 

  • Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans Geosci Remote Sens 1155–1164

    Google Scholar 

  • Keshri AK, Shukla A, Gupta RP (2009) ASTER ratio indices for supraglacial terrain mapping. Int J Remote Sens 30(2):519–524

    Article  Google Scholar 

  • Kirkbride MP, Deline P (2013) The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf Processes Land 38(15):1779–1792

    Article  Google Scholar 

  • Kneib M, Miles ES, Jola S, Buri P, Herreid S, Bhattacharya A, Watson CS, Bolch T, Quincey D, Pellicciotti F (2021) Mapping ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sens Environ 253:112201

    Google Scholar 

  • Kulkarni AV, Singh SK, Mathur P, Mishra VD (2006) Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan region. Int J Remote Sens 27(12):2449–2457

    Article  Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK (2010) Distribution of seasonal snow cover in central and western Himalaya. Ann Glaciol 51(54):123–128

    Article  Google Scholar 

  • Kumar A, Saha A, Dadhwal VK (2010) Some issues related with sub-pixel classification using HYSI data from IMS-1 satellite. J Indian Soc Remote Sens 38(2):203–210

    Article  Google Scholar 

  • Laha S, Kumari R, Singh S, Mishra A, Sharma T, Banerjee A, Nainwal HC, Shankar R (2017) Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers. Ann Glaciol 58(75pt2):110–118

    Article  Google Scholar 

  • Lantzanakis G, Mitraka Z, Chrysoulakis N (2017) Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery. Perspectives on atmospheric sciences. Springer, Cham, pp 255–261

    Chapter  Google Scholar 

  • Liu Q, Trinder J, Turner I (2016) A comparison of sub-pixel mapping methods for coastal areas. ISPRS Ann Photogrammetry Remote Sens Spatial Inf Sci 3(7)

    Google Scholar 

  • Mishra A, Negi BD, Banerjee A, Nainwal HC, Shankar R (2018) Estimation of ice thickness of the Satopanth Glacier, Central Himalaya using ground penetrating radar. Curr Sci 114(4):785

    Google Scholar 

  • Nainwal HC, Chaudhary M, Rana N, Negi BD, Negi RS, Juyal N, Singhvi AK (2007) Chronology of the late quaternary glaciation around Badrinath (upper Alaknanda Basin): preliminary observations. Curr Sci 10:90–96

    Google Scholar 

  • Nainwal HC, Negi BDS, Chaudhary M, Sajwan KS, Gaurav A (2008) Temporal changes in rate of recession: Evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Curr Sci, 653–660

    Google Scholar 

  • Nainwal HC, Banerjee A, Shankar R, Semwal P, Sharma T (2016) Shrinkage of Satopanth and BhagirathKharak glaciers, India, from 1936 to 2013. Ann Glaciol 57(71):131–139

    Article  Google Scholar 

  • Nair VS, Babu SS, Moorthy KK, Sharma AK, Marinoni A, Ajai (2013) Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B: Chem Phys Meteorol 65(1):19738

    Article  Google Scholar 

  • Painter TH, Dozier J (2004) Measurements of the hemispherical‐directional reflectance of snow at fine spectral and angular resolution. J Geophys Res: Atmos 109(D18)

    Google Scholar 

  • Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113(4):868–879

    Article  Google Scholar 

  • Panicker AS, Sandeep K, Gautam AS, Trimbake HK, Nainwal HC, Beig G, Bisht DS, Das S (2021) Black carbon over a central Himalayan Glacier (Satopanth): Pathways and direct radiative impacts. Sci Total Environ 766:144242

    Google Scholar 

  • Panwar A, Thapliyal A, Aswal A, Singh D (2014) Recession of Satopanth and Bagirath Kharak glacier, using multi temporal set of data. Int J Innovation Sci Res 9(1):9–15

    Google Scholar 

  • Paul F, Winsvold SH, Kääb A, Nagler T, Schwaizer G (2016) Glacier remote sensing using sentinel-2. Part II: mapping glacier extents and surface facies, and comparison to landsat 8. Remote Sens 8(7):575

    Google Scholar 

  • Pomeroy JW, Jones HG, Tranter M, Lilbæk GR (2006) Hydrochemical processes in snow‐covered basins. Encycl Hydrol Sci

    Google Scholar 

  • Pope A, Rees WG (2014a) Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens Environ 141:1–13

    Article  Google Scholar 

  • Pope A, Rees WG (2014b) Using in situ spectra to explore landsat classification of glacier surfaces. Int J Appl Earth Obs Geoinf 27:42–52

    Article  Google Scholar 

  • Racoviteanu AE, Arnaud Y, Williams MW, Ordonez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54(186):499–510

    Article  Google Scholar 

  • Racoviteanu A, Williams MW (2012) Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens 4(10):3078–3109

    Article  Google Scholar 

  • Remya SN, Kulkarni AV, Hassan Syed T, Nainwal HC (2020) Glacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale. Geocarto Int, 1–19

    Google Scholar 

  • Sah MP (1991) Some geomorphic observations on Badrinath-Satopanth area, Chamoli District, Garhwal Himalaya. J Him Geol 2(2):185–195

    Google Scholar 

  • Salah M (2017) A survey of modern classification techniques in remote sensing for improved image classification. J Geomatics 11(1):21

    Google Scholar 

  • Sattar A, Goswami A, Kulkarni AV, Das P (2019) Glacier-surface velocity derived ice volume and retreat assessment in the dhauliganga basin, central himalaya–A remote sensing and modeling based approach. Front Earth Sci 7:105

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR. Hillslope‐glacier coupling (2011) The interplay of topography and glacial dynamics in High Asia. J Geophys Res: Earth Surf 116(F2)

    Google Scholar 

  • Scherler D, Wulf H, Gorelick N (2018) Global assessment of supraglacial debris-cover extents. Geophys Res Lett 45(21):11–798

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Sharma T, Semwal P, Shah SS, Nainwal HC, Mishra A (2018) General geomorphological field observations around Satopanth Glacier Area, Garhwal Himalaya, Uttarakhand. IJRAR-Int J Res Anal Rev (IJRAR) 5(4):493–508

    Google Scholar 

  • Shukla A, Ali I (2016) A hierarchical knowledge-based classification for glacier terrain mapping: a case study from Kolahoi Glacier, Kashmir Himalaya. Ann Glaciol 57(71):1–10

    Article  Google Scholar 

  • Shukla A, Yousuf B (2016) Optimization of neural networks for multisource classification in a glaciated terrain. In: Raju NJ (ed) Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Springer, Cham, pp 755–759

    Google Scholar 

  • Shukla A, Yousuf B (2017) Evaluation of multisource data for glacier terrain mapping: a neural net approach. Geocarto Int 32(5):569–587

    Article  Google Scholar 

  • Shukla A, Arora MK, Gupta RP (2010) Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens Environ 114(7):1378–1387

    Article  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • Srivastava DK, Bhambu L (2010) Data classification using support vector machine. JATIT 12:1–7

    Google Scholar 

  • Stroeve J, Box JE, Gao F, Liang S, Nolin A, Schaaf C (2005) Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens Environ 94(1):46–60

    Article  Google Scholar 

  • Subramaniam S, Babu AS, Sivasankar E, Rao VV, Behera G (2011) Snow cover estimation from Resourcesat-1 AWiFS–image processing with an automated approach. Int J Image Process (IJIP) 5(3):298

    Google Scholar 

  • Wolken GJ, Sharp M, Wang L (2009) Snow and ice facies variability and ice layer formation on Canadian Arctic ice caps, 1999–2005. J Geophys Res: Earth Surf 114(F3).

    Google Scholar 

  • Yousuf B, Shukla A, Arora MK, Jasrotia AS (2019) Glacier facies characterization using optical satellite data: impacts of radiometric resolution, seasonality, and surface morphology. Prog Phys Geogr: Earth Environ. https://doi.org/10.1177/0309133319840770

  • Yousuf B, Shukla A, Arora MK, Bindal A, Jasrotia AS (2020) On drivers of subpixel classification accuracy—an example from glacier facies. IEEE J Sel Top Appl Earth Obs Remote Sens 13:601–608

    Google Scholar 

  • Zhang H, Zhao J, Jiancheng S (2005) Comparing four sub-pixel algorithms in MODIS snow mapping. In: Proc IGARSS’05, IEEE international, Seoul, South Korea, Jul. 25, 2005, 6:3784–3787

    Google Scholar 

  • Zhang J, Jia L, Menenti M, Hu G (2019) Glacier facies mapping using a machine-learning algorithm: the ParlungZangbo Basin case study. Remote Sens 11(4):452

    Article  Google Scholar 

  • Zhou C, Zheng L (2017) Mapping radar glacier zones and dry snow line in the antarctic peninsula using sentinel-1 images. Remote Sens 9(11):1171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousuf, B., Shukla, A., Arora, M.K. (2022). Temporal Variability of the Satopanth Glacier Facies at Sub-pixel Scale, Garhwal Himalaya, India. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_5

Download citation

Publish with us

Policies and ethics