Skip to main content

Environmental and Socio-Economic Consequences of Recent Mountain Glacier Fluctuations in Norway

Part of the Sustainable Development Goals Series book series (SDGS)

Abstract

Mountain glaciers currently experience significant mass losses and frontal retreat at the global scale. Because mountain glaciers generally respond sensitively to climate and are differently affected by climate variations at the regional scale, they may significantly and specifically impact their natural and human environment. Norway has the largest glacier mass in continental Europe and its glaciers are generally well-studied and monitored. Norway may, therefore, provide valuable insights into both causes and consequences of recent glacier fluctuations. In this chapter, the Holocene glacier history of Norway is presented with special focus on glacier fluctuations since the beginning of the twentieth century CE. In line with global patterns, the majority of Norwegian glaciers are facing overall mass losses which are predicted to accelerate in the future. Glacier retreat has an environmental impact by enhanced paraglacial activity, increased natural risk potential, and changes of glacier foreland ecosystems. The socio-economic consequences of mountain glacier changes in Norway are most relevant in the high-revenue glacier tourism and hydropower production industries. It appears that the natural and socio-economic systems in Norway are rather resilient to the anticipated changes and consequences of recent and future glacier fluctuations in comparison with other mountain regions worldwide.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aall C, Høyer KG (2005) Tourism and climate change adaptation—the Norwegian case. In: Hall CM, Higham J (eds) (2005) Tourism, recreation and climate change. Channelview Press, London, pp 209–223

    Chapter  Google Scholar 

  • Alean J (2010) Gletscher der alpen. Haupt, Bern

    Google Scholar 

  • Andreassen LM (2000) Regional change of glaciers in northern Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2000/1

    Google Scholar 

  • Andreassen LM, Winsvold SH (2012) Inventory of norwegian glaciers. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 38–2012

    Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass balance and length variations in Norway. Ann Glaciol 42:317–325

    Article  Google Scholar 

  • Andreassen LM, Elvehøy H, Jóhannesson T, Oerlemans J, Beldring S, Van den Broeke, MR (2006) Modelling the climate sensitivity of Storbreen and Engabreen, Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2006/03

    Google Scholar 

  • Andreassen LM, Paul F, Kääb A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2:131–145

    Article  Google Scholar 

  • Andreassen LM, Kjøllmoen B, Rasmussen A, Melvold K, Nordli Ø (2012) Langfjordjøkelen, a rapidly shrinking glacier in northern Norway. J Glaciol 58:581–593

    Article  Google Scholar 

  • Andreassen LM, Huss M, Melvold K, Elvehøy H, Winsvold SH (2015) Ice thickness measurements and volume estimates for glaciers in Norway. J Glaciol 61:763–775

    Article  Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV (2016) Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. Cryosphere 10:535–552

    Article  Google Scholar 

  • Bakke J, Dahl SO, Nesje A (2005) Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, western Norway. J Quaternary Sci 20:179–198

    Article  Google Scholar 

  • Bakke J, Dahl SO, Paasche Ø, Løvlie R, Nesje A (2005) Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the lateglacial and Holocene. Holocene 15:518–540

    Article  Google Scholar 

  • Bakke J, Dahl SO, Paasche Ø, Simonsen JR, Kvisvik B, Bakke K, Nesje A (2010) A complete record of Holocene glacier activity at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Sci Rev 29:1246–1262

    Article  Google Scholar 

  • Ballantyne CK (1995) Paraglacial debris-cone formation on recently deglaciated terrain, western Norway. Holocene 5:25–33

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quaternary Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following glacier retreat, Fåbergstølsdalen, Norway. Arctic Alpine Res 26:255–269

    Article  Google Scholar 

  • Barry RG, Gan TY (2011) The global cryosphere: past, present, future. University Press, Cambridge

    Book  Google Scholar 

  • Bauer C (2011) Climate change and alpine summer tourism—chances and strategies in vent and obergurgl. Paper presented at Managing Alpine Future II, Innsbruck

    Google Scholar 

  • Baumann S, Winkler S (2010) Parameterization of glacier inventory data from Jotunheimen/Norway in comparison to the European Alps and the Southern Alps of New Zealand. Erdkunde 64:155–177

    Article  Google Scholar 

  • Beisland CS, Birkelund H, Endresen H, Haddeland I, Vik MA (2015) Et væravhengig kraftsystem—og et klima i endring. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 85–2015

    Google Scholar 

  • Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Fantini A, Giacona F, Hauck C, Huss M, Huwald H, Lehning M, López-Moreno JI, Magnusson J, Marty C, Morán-Tejéda E, Morin S, Naaim M, Provenzale A, Rabatel A, Six D, Stötter J, Strasser U, Terzago S, Vincent C (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12:759–794

    Article  Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation, 2nd edn. Hodder, London

    Google Scholar 

  • Benn DI, Kirkbride MP, Owen LA, Brazier V (2005) Glaciated valley systems. In: Evans DJA (ed) (2005) Glacial landsystems. Hodder Arnold, London, pp 372–406

    Google Scholar 

  • Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci Rev 114:156–174

    Article  Google Scholar 

  • Bickerton RW, Matthews JA (1993) Little ice age’ variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. J Quaternary Sci 8:45–66

    Article  Google Scholar 

  • Blikra LH, Hole PA, Rye N (1989) Skred i Norge—Hurtige massebevegelser og avsetningstyper i alpine områder, Indre Nordfjord. Trondheim: Norges Geologiske Undersøkelse, Skrifter 92

    Google Scholar 

  • Blikra LH, Longva O, Braathen A, Anda E, Dehls JF, Stalsberg K (2006) Rock slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans SG, Mugnozza GS, Strom A, Hermanns RL (eds) (2006) Landslides from massive rock slope failure. Springer, Dordrecht, pp 475–496

    Chapter  Google Scholar 

  • Bøe R, Longva O, Lepland A, Blikra LH, Sønstegaard E, Haflidason H, Bryn P, Lien R (2004) Postglacial mass movements and their causes in fjords and lakes in western Norway. Norw J Geol 84:35–55

    Google Scholar 

  • Bogen J, Wold B, Østrem G (1989) Historic glacier variations in Scandinavia. In: Oerlemans J (ed) (1989) Glacier fluctuations and climatic change. Reidel, Dordrecht, pp 109–128

    Chapter  Google Scholar 

  • Bogen J, Xu M, Kennie P (2015) The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Proc Land 40:942–952

    Article  Google Scholar 

  • Breien H, De Blasio F, Elvehøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 5:271–280

    Article  Google Scholar 

  • IPCC (2014) Climate change 2013: the physical science basis. Contribution of working group I to the 5th Assessment report of the Intergovernmental Panel on Climate Change. Cambridge

    Google Scholar 

  • Chinn TJH, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand—a comparison for their glaciological and meteorological causes. Geogr Ann A 87:141–157

    Article  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3071

    Article  Google Scholar 

  • Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228

    Article  Google Scholar 

  • Curry AM (2000) Observations on the distribution of paraglacial reworking of glacigenic drift in western Norway. Norsk Geogr Tiddskr 54:139–147

    Article  Google Scholar 

  • Curry AM, Ballantyne CK (1999) Paraglacial modification of glacigenic sediment. Geogr Ann A 81:409–419

    Article  Google Scholar 

  • Engelhardt M, Schuler TV, Andreassen LM (2015) Sensitivities of glacier mass balance and runoff to climate perturbations in Norway. Ann Glaciol 56:71–88

    Article  Google Scholar 

  • Engeset RV, Schuler TV, Jackson M (2005) Analysis of the first jökulhlaup at Blåmannsisen, northern Norway, and implications for future events. Ann Glaciol 42:35–41

    Article  Google Scholar 

  • Etzelmüller B, Romstad B, Fjellanger J (2007) Automatic regional classification of topography in Norway. Norw J Geol 87:167–180

    Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Fægri K (1934) Über die längenänderungen einiger gletscher des Jostedalsbre und die dadurch bedingten Pflanzensukzessionen. Bergen: Bergens Museums Årbok 1933—Naturvidenskapelig rekke No. 7

    Google Scholar 

  • Faugli PE (1987) FoU i Jostedøla. Norwegian water resources and energy directorate (NVE), Oslo, Publikasjoner V 6

    Google Scholar 

  • Fleig AK (2013) Norwegian hydrological reference dataset for climate change studies. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 02–2013

    Google Scholar 

  • Furunes T, Mykletun RJ (2012) Frozen adventure at risk? A 7-year follow-up study of Norwegian glacier tourism. Scand J Hosp Tour 12:324–348

    Article  Google Scholar 

  • Golombek R, Kittelsen SAC, Haddeland I (2012) Climate change: impacts on electricity markets in Western Europe. Clim Change 113:357–370

    Article  Google Scholar 

  • Grove JM (2001) The initiation of the “little ice age” in regions round the North Atlantic. Climatic Change 46:53–82

    Article  Google Scholar 

  • Grove JM (2004) The little ice age. Routledge, London

    Google Scholar 

  • Hall CM (2006) The geography of tourism and recreation: environment. Place and Space, Routledge, London

    Book  Google Scholar 

  • Hambrey MJ, Alean J (2004) Glaciers, 2nd edn. University Press, Cambridge

    Book  Google Scholar 

  • Hausberg JE, Andreassen LM (2009) Satellitbasert brekartlegging I Lyngen. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2009/7

    Google Scholar 

  • Hay J, Elliot T (2008) New Zealand’s glaciers: key national and global assets for science and society. In: Orlove B, Wiegandt E, Luckman B (eds) (2008) Darkening peaks: glacier retreat, science, and society. University of California Press, Berkeley, pp 185–195

    Google Scholar 

  • Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse J, Ivy-Ochs S, Hilger P (2017) Rock-avalanche activity in W and S Norway peaks after the retreat of the Scandinavian ice sheet. In: Mikoš M, Vilimek V, Yin Y (eds) (2017) Advancing culture of living with landslides (WLF 2017). Springer, Cham, pp 331–338

    Chapter  Google Scholar 

  • Hill JL, Vater AE, Geary AP, Matthews JA (2018) Chronosequences of ant-nest mounds from glacier forelands of Jostedalsbreen, southern Norway: insights into the distribution, succession and geo-ecology of red wood ants (Formica lugubris and F. aquilonia). Holocene 28:1113–1130

    Article  Google Scholar 

  • Hoek WZ, Bos JAA (2007) Early Holocene climate oscillations—causes and consequences. Quaternary Sci Rev 26:1901–1906

    Article  Google Scholar 

  • Imhof P, Nesje A, Nussbaumer SU (2011) Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little ice age’ until the present: The influence of the North Atlantic Oscillation. Holocene 22:235–247

    Article  Google Scholar 

  • Jackson M, Regulina G (2014) Inventory of glacier-related hazardous events in Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 83–2014

    Google Scholar 

  • Jansen HL, Riis Simonsen J, Dahl SO, Bakke J, Ringkjøb Nielsen P (2016) Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. Holocene 26:736–755

    Article  Google Scholar 

  • Kalsnes B, Nadim F, Hermanns RL, Hygen HO, Petkovic G, Dolva BK, Berg H, Høgvold DO (2016) Landslide risk management in Norway. In: Ho K, Lacasse S, Picarelli L (eds) (2016) Slope safety preparedness for impact of climate change. CRC Press, Boca Raton, pp 215–251

    Google Scholar 

  • Kjøllmoen B (2017a) Homogenisering av korte massebalanseserier I Norge. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 33/2017

    Google Scholar 

  • Kjøllmoen B (2017b) Glaciological investigations in Norway 2016. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 76/2017

    Google Scholar 

  • Kjøllmoen B (2018) Glaciological investigations in Norway 2017. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 82/2018

    Google Scholar 

  • Klemsdal T, Sjulsen E (1988) The Norwegian macro-landforms: definition, distribution and system of evolution. Norsk Geogr Tidsskr 42:133–147

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana J-F (2014) Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1267–1326.

    Google Scholar 

  • Lappegard G, Beldring S, Roald LA, Engen-Skaugen T, Førland EJ (2006) Projection of future streamflow in glaciated and non-glaciated catchments in Norway. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Oppdragsrapport A pp 9–2006

    Google Scholar 

  • Laumann T, Nesje A (2014) Spørteggbreen, western Norway, in the past, present and future: Simulations with a two-dimensional dynamical glacier model. Holocene 24:842–852

    Article  Google Scholar 

  • Laute K, Beylich AA (2013) Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology 188:12–30

    Article  Google Scholar 

  • Laute K, Beylich AA (2014) Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology 218:16–34

    Article  Google Scholar 

  • Lawrence D (2016) Klimaendring og framtidige flommer i Norge. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Rapport pp 81–2016

    Google Scholar 

  • Løset O (2019) Turistar blir straffa for rekordsommar i fjor. https://www.nrk.no/sognogfjordane/turistar-blir-straffa-for-rekordsommar-i-fjor-1.14591188. Accessed 20 June 2019

  • Lozán JL, Grassl H, Kasang D, Nolz D, Escher-Vetter H (2015) Warnsignal klima: das eis der erde. Universität Hamburg (Wissenschaftliche Auswertungen)

    Google Scholar 

  • Mangerud J (2004) Ice sheets limits in Norway and on the Norwegian continental shelf. In: Ehlers J, Gibbard PL (eds) (2004) Quaternary glaciations extent and chronology. Elsevier, Amsterdam, pp 271–294

    Chapter  Google Scholar 

  • Marr P, Löffler J (2017) Establishing a multi-proxy approach to alpine blockfield evolution in south-central Norway. AUC Geogr 52:219–236

    Article  Google Scholar 

  • Marr P, Winkler S, Löffler J (2018) Investigations on blockfields and related landforms at Blåhø (Southern Norway) using Schmidt-hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geogr Ann A 100:285–306

    Article  Google Scholar 

  • Marr P, Winkler S, Löffler J (2019) Schmidt-hammer exposure-age dating (SHD) performed on periglacial and related landforms in Opplendskedalen, Geirangerfjellet, Norway: Implications for mid- and late-Holocene climate variability. Holocene 29:97–109

    Article  Google Scholar 

  • Marr P, Winkler S, Binnie SA, Löffler J (2019b) 10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway. E&G Quaternary Sci J 69:1–12. (accepted)

    Google Scholar 

  • Matthews JA (1979) The vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. I. Introduction and approaches involving classification. J Biogeogr 6:17–47

    Article  Google Scholar 

  • Matthews JA (1979) The vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. II. Approaches involving ordination and general conclusions. J Biogeogr 6:133–167

    Article  Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthews JA (2005) ‘Little ice age’ glacier variations in Jotunheimen, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. Holocene 15:1–19

    Article  Google Scholar 

  • Matthews JA, Dresser P-Q (2008) Holocene glacier variation chronology of the Smørstabbtindan massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events. Holocene 18:181–201

    Article  Google Scholar 

  • Matthews JA, Vater AE (2015) Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. CATENA 135:219–230

    Article  Google Scholar 

  • Matthews JA, Whittaker RJ (1987) Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arctic Alpine Res 19:385–395

    Article  Google Scholar 

  • Matthews JA, Winkler S, Wilson P (2014) Age and origin of ice-cored moraines in Jotunheimen and Breheimen, Southern Norway: Insights from Schmidt-hammer exposure-age dating. Geogr Ann A 96:531–548

    Google Scholar 

  • Matthews JA, Winkler S, Wilson P, Tomkins MD, Dortch JM, Mourne RW, Hill JL, Owen G, Vater AE (2018) Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating in Jotunheimen, southern Norway. Boreas 47:1144–1169

    Article  Google Scholar 

  • Mercier D (2008) Paraglacial and paraperiglacial landsystems: concepts, temporal scales and spatial distribution. Géomorphologie 4:223–234

    Article  Google Scholar 

  • Mutz S, Paeth H, Winkler S (2016) Modelling of future mass balance changes of Norwegian glaciers by application of a dynamical-statistical model. Clim Dynam 46:1581–1597

    Article  Google Scholar 

  • Nesje A (1989) Glacier-front variations at the outlet glaciers from Jostedalsbreen and climate in the Jostedalsbre region of western Norway in the period 1901–1980. Norsk Geogr Tidsskr 43:3–17

    Article  Google Scholar 

  • Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. Holocene 15:1245–1252

    Article  Google Scholar 

  • Nesje A (2009) Late pleistocene and Holocene alpine glacier fluctuation in Scandinavia. Quaternary Sci Rev 28:2119–2136

    Article  Google Scholar 

  • Nesje A, Dahl SO (2003) The ‘Little ice age’—only temperature? Holocene 13:139–145

    Article  Google Scholar 

  • Nesje A, Matthews JA (2011) The Briksdalsbre event: a winter precipitation-induced decadal-scale glacial advance in southern Norway in the AD 1990s and its implications. Holocene 22:249–261

    Article  Google Scholar 

  • Nesje A, Johannesen T, Birks HJB (1995) Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. Holocene 5:343–347

    Article  Google Scholar 

  • Nesje A, Dahl SO, Andersson C, Matthews JA (2000) The lacustrine sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quaternary Sci Rev 19:1047–1065

    Article  Google Scholar 

  • Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008a) Norwegian mountain glaciers in the past, present and future. Global Planet Change 60:10–27

    Article  Google Scholar 

  • Nesje A, Dahl SO, Thun T, Nordli Ø (2008b) The “Little ice age” glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dynam 30:789–801

    Article  Google Scholar 

  • NOU (2010) Tilpassing til eit klima i endring. Oslo, Noregs Offentlege Utgreiingar 2010:10

    Google Scholar 

  • Nussbaumer SU, Nesje A, Zumbühl HJ (2011) Historical glacier fluctuations of Jostedalsbreen and folgefonna (southern Norway) reassessed by new pictorial and written evidence. Holocene 21:455–471

    Article  Google Scholar 

  • NVE (2019) Updated glacier data base—https://www.nve.no/hydrologi/bre/bredata/ (last accessed 30.01.2019)

  • NCCS (2017) Climate in Norway 2100—a knowledge base for climate adaptations, NCCS report no. 1/2017, Norwegian Centre for Climate Services, Oslo

    Google Scholar 

  • Østrem G, Ziegler T (1969) Atlas over breer i Sør-Norge. Meddelelse nr 20 fra Hydrologisk avdeling, NVE

    Google Scholar 

  • Østrem G, Haakensen N, Melander O (1973) Atlas over breer i Nord-Skandinavia. Oslo: NVE, Meddelelser fra Hydrologisk Avdeling p 22

    Google Scholar 

  • Østrem G, Dale Selvig K, Tandberg K (1988) Atlas over breer i Sør-Norge, Oslo: NVE, Meddelelser fra Hydrologisk Avdeling p 61

    Google Scholar 

  • Paul F, Andreassen LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. J Glaciol 55:607–618

    Article  Google Scholar 

  • Paul F, Andreassen LM, Winsvold SH (2011) A new glacial inventory for the Jostedalsbreen region, Norway, from landsat TM scenes of 2006 and changes since 1966. Ann Glaciol 52:153–162

    Article  Google Scholar 

  • Pohjola VA, Rogers JC (1997) Atmospheric circulation and variations in Scandinavian glacier mass balance. Quaternary Res 47:29–36

    Article  Google Scholar 

  • Prasad S, Brauer A, Rein B, Negendank JFW (2006) Rapid climate change during the early Holocene in western Europe and Greenland. Holocene 16:153–158

    Article  Google Scholar 

  • Purdie H (2013) Glacier retreat and tourism: insights from New Zealand. Mt Res Dev 33:463–472

    Article  Google Scholar 

  • Purdie H, Gomez C, Espiner S (2015) Glacier recession and the changing rockfall hazard: Implications for glacier tourism. New Zeal Geogr 71:189–202

    Article  Google Scholar 

  • Quincey D, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet Change 56:137–152

    Article  Google Scholar 

  • Rasmussen LA (2004) Altitude variation of glacier mass balance in Scandinavia. Geophys Res Lett 31:L13401

    Article  Google Scholar 

  • Robbins JA, Matthews JA (2009) Pioneer vegetation on glacier forelands in southern Norway: emerging communities? J Veg Sci 20:889–902

    Article  Google Scholar 

  • Robbins JA, Matthews JA (2010) Regional variation in successional trajectories and rates of vegetation change on glacier forelands in South-Central Norway. Arct Antarct Alp Res 42:351–361

    Article  Google Scholar 

  • Robbins JA, Matthews JA (2014) Use of ecological indicator values to investigate successional change in boreal to high-alpine glacier-foreland chronosequences, southern Norway. Holocene 24:1453–1464

    Article  Google Scholar 

  • Saarinen J, Tervo K (2006) Perceptions and adaptation strategies of the tourism industry to climate change: the case of finnish nature-based tourism entrepreneurs. Int J Innov Sustain Dev 1:214–228

    Article  Google Scholar 

  • Solomina ON, Bradley RS, Hodgson DA, Ivy-Ochs S, Jomelli V, Mackintosh AN, Nesje A, Owen LA, Wanner H, Wiles GC, Young NE (2016) Glacier fluctuations during the past 2000 years. Quaternary Sci Rev 149:61–90

    Article  Google Scholar 

  • Steen R (2016) Klimatilpasning i energiforsyningen 2009–2016—Hvor står vi nå? Norwegian water resources and energy directorate (NVE), Oslo, Rapport pp 76–216

    Google Scholar 

  • Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature—two case studies. Climatic Change 90:413–441

    Article  Google Scholar 

  • Stewart EJ, Wilson J, Espiner S, Purdie H, Lemieux C, Dawson J (2016) Implications of climate change for glacier tourism. Tourism Geogr 18:377–398

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geog 36:421–439

    Article  Google Scholar 

  • Stokes CR, Andreassen LM, Champion MR, Corner GD (2018) Widespread and accelerating glacier retreat on the Lyngen peninsula, northern Norway, since their ‘little ice age’ maximum. J Glaciol 64:100–118

    Article  Google Scholar 

  • Vater AE (2012) Insect and arachnid colonization on the Storbreen glacier foreland, Jotunheimen, Norway: persistence of taxa suggests an alternative model of succession. Holocene 22:1123–1133

    Article  Google Scholar 

  • Vater AE, Matthews JA (2013) Testing the ‘addition and persistence model’ of invertebrate succession in a subalpine glacier-foreland chronosequence: fåbergstølsbreen, southern Norway. Holocene 23:1151–1162

    Article  Google Scholar 

  • Vater AE, Matthews JA (2015) Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25:108–129

    Article  Google Scholar 

  • Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sc 19:913–931

    Article  Google Scholar 

  • Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK (2016) Evidence for changes in the magnitude and frequency of observed rainfall versus snowmelt driven floods in Norway. J Hydrol 538:33–48

    Article  Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Winkler S (1996) Front variations of outlet glaciers from Jostedalsbreen, western Norway, during the twentieth century. Norg Geol Unders B 431:33–47

    Google Scholar 

  • Winkler S (2002) Von der ‘kleinen eiszeit’ zum ‘globalen gletscherrückzug’—eignen sich gletscher als klimazeugen? Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse, p 3

    Google Scholar 

  • Winkler S (2003) A new interpretation of the date of the ‘little ice age’ maximum at Svartisen and Okstindan, northern Norway. Holocene 13:83–95

    Article  Google Scholar 

  • Winkler S (2009) Gletscher und ihre landschaften. Wissenschaftliche Buchgesellschaft/Primus, Darmstadt

    Google Scholar 

  • Winkler S (2015) Die gegenwärtige situation der gletscher auf neuseeland. In: Lozán JL, Grassl H, Kasang D, Nolz D, Escher-Vetter H (eds) (2015) Warnsignal klima: das eis der erde. Universität Hamburg (Wissenschaftliche Auswertungen), pp 123–129

    Google Scholar 

  • Winkler S (2019) Terminal moraine formation processes and geomorphology of glacier forelands at selected outlet glaciers of Jostedalsbreen, South Norway. In: Beylich AA (ed) (2019) Landscapes and landforms of norway. Springer, Dordrecht

    Google Scholar 

  • Winkler S, Haakensen N (1999) Kritische überprüfung der möglichkeit zur prognose des gletscherverhaltens auf grundlage von modellierungen—dargestellt anhand von regionalen beispielen aus Norwegen. Petermann Geogr Mitt 143:291–304

    Google Scholar 

  • Winkler S, Matthews JA (2010) Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology 116:87–106

    Article  Google Scholar 

  • Winkler S, Nesje A (2009) Perturbation of climatic response at maritime glaciers? Erdkunde 63:229–244

    Article  Google Scholar 

  • Winkler S, Haakensen N, Nesje A, Rye N (1997) Glaziale dynamik in westnorwegen—ablauf und ursachen des aktuellen gletschervorstoßes am jostedalsbreen. Petermann Geogr Mitt 141:43–63

    Google Scholar 

  • Winkler S, Matthews JA, Shakesby RA, Dresser PQ (2003) Glacier variations in Breheimen, southern Norway: dating little ice age moraine sequences at seven low-altitude glaciers. J Quaternary Sci 18:395–413

    Article  Google Scholar 

  • Winkler S, Elvehøy H, Nesje A (2009) Glacier fluctuations of Jostedalsbreen, western Norway, during the past 20 years: the sensitive response of maritime mountain glaciers. Holocene 19:389–408

    Article  Google Scholar 

  • Winkler S, Chinn T, Gärtner-Roer I, Nussbaumer SU, Zemp M, Zumbühl HJ (2010) An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64:97–118

    Article  Google Scholar 

  • Winkler S, Donner A, Suntrup gen. Tintrup A (2019) Periglacial landforms in Jotunheimen, central southern Norway, and their altitudinal distribution. In: Beylich AA (ed): Landscapes and landforms of norway. Springer, Dordrecht

    Google Scholar 

  • Winsvold SH, Andreassen LM, Kienholz C (2014) Glacier area and length changes from repeat inventories. Cryosphere 8:1885–1903

    Article  Google Scholar 

  • Wittmeier HE, Bakke J, Vasskog K, Trachsel M (2015) Reconstructing holocene glacial activity at landfjordjøkulen, arctic norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments. Quaternary Sci Rev 114:78–99

    Article  Google Scholar 

  • Zängl W, Hamberger S (2004) Gletscher im treibhaus: eine fotographische zeitreise in die alpine eiswelt. Steinfurt, Tecklenborg

    Google Scholar 

  • Zemp M, Roer I, Kääb A, Hoelzle M, Paul F, Haeberli W (2008) Global glaciers changes: facts and figures. WGMS/UNEP (Zürich)

    Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurðsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  • Zemp M, Nussbaumer SU, Gärtner-Roer I, Huber J, Machguth H, Paul F, Hoelzle M (2017) Global glacier change bulletin no. 2 (2014–2015). ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, WGMS (Zürich)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Marr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marr, P., Winkler, S., Löffler, J. (2022). Environmental and Socio-Economic Consequences of Recent Mountain Glacier Fluctuations in Norway. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_10

Download citation

Publish with us

Policies and ethics