Abstract
Mountain glaciers currently experience significant mass losses and frontal retreat at the global scale. Because mountain glaciers generally respond sensitively to climate and are differently affected by climate variations at the regional scale, they may significantly and specifically impact their natural and human environment. Norway has the largest glacier mass in continental Europe and its glaciers are generally well-studied and monitored. Norway may, therefore, provide valuable insights into both causes and consequences of recent glacier fluctuations. In this chapter, the Holocene glacier history of Norway is presented with special focus on glacier fluctuations since the beginning of the twentieth century CE. In line with global patterns, the majority of Norwegian glaciers are facing overall mass losses which are predicted to accelerate in the future. Glacier retreat has an environmental impact by enhanced paraglacial activity, increased natural risk potential, and changes of glacier foreland ecosystems. The socio-economic consequences of mountain glacier changes in Norway are most relevant in the high-revenue glacier tourism and hydropower production industries. It appears that the natural and socio-economic systems in Norway are rather resilient to the anticipated changes and consequences of recent and future glacier fluctuations in comparison with other mountain regions worldwide.
Keywords
- Climate change
- Glacier retreat
- Environmental change
- Socio-economic impacts
- Norway
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aall C, Høyer KG (2005) Tourism and climate change adaptation—the Norwegian case. In: Hall CM, Higham J (eds) (2005) Tourism, recreation and climate change. Channelview Press, London, pp 209–223
Alean J (2010) Gletscher der alpen. Haupt, Bern
Andreassen LM (2000) Regional change of glaciers in northern Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2000/1
Andreassen LM, Winsvold SH (2012) Inventory of norwegian glaciers. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 38–2012
Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass balance and length variations in Norway. Ann Glaciol 42:317–325
Andreassen LM, Elvehøy H, Jóhannesson T, Oerlemans J, Beldring S, Van den Broeke, MR (2006) Modelling the climate sensitivity of Storbreen and Engabreen, Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2006/03
Andreassen LM, Paul F, Kääb A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2:131–145
Andreassen LM, Kjøllmoen B, Rasmussen A, Melvold K, Nordli Ø (2012) Langfjordjøkelen, a rapidly shrinking glacier in northern Norway. J Glaciol 58:581–593
Andreassen LM, Huss M, Melvold K, Elvehøy H, Winsvold SH (2015) Ice thickness measurements and volume estimates for glaciers in Norway. J Glaciol 61:763–775
Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV (2016) Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. Cryosphere 10:535–552
Bakke J, Dahl SO, Nesje A (2005) Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, western Norway. J Quaternary Sci 20:179–198
Bakke J, Dahl SO, Paasche Ø, Løvlie R, Nesje A (2005) Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the lateglacial and Holocene. Holocene 15:518–540
Bakke J, Dahl SO, Paasche Ø, Simonsen JR, Kvisvik B, Bakke K, Nesje A (2010) A complete record of Holocene glacier activity at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Sci Rev 29:1246–1262
Ballantyne CK (1995) Paraglacial debris-cone formation on recently deglaciated terrain, western Norway. Holocene 5:25–33
Ballantyne CK (2002) Paraglacial geomorphology. Quaternary Sci Rev 21:1935–2017
Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following glacier retreat, Fåbergstølsdalen, Norway. Arctic Alpine Res 26:255–269
Barry RG, Gan TY (2011) The global cryosphere: past, present, future. University Press, Cambridge
Bauer C (2011) Climate change and alpine summer tourism—chances and strategies in vent and obergurgl. Paper presented at Managing Alpine Future II, Innsbruck
Baumann S, Winkler S (2010) Parameterization of glacier inventory data from Jotunheimen/Norway in comparison to the European Alps and the Southern Alps of New Zealand. Erdkunde 64:155–177
Beisland CS, Birkelund H, Endresen H, Haddeland I, Vik MA (2015) Et væravhengig kraftsystem—og et klima i endring. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 85–2015
Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Fantini A, Giacona F, Hauck C, Huss M, Huwald H, Lehning M, López-Moreno JI, Magnusson J, Marty C, Morán-Tejéda E, Morin S, Naaim M, Provenzale A, Rabatel A, Six D, Stötter J, Strasser U, Terzago S, Vincent C (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12:759–794
Benn DI, Evans DJA (2010) Glaciers and glaciation, 2nd edn. Hodder, London
Benn DI, Kirkbride MP, Owen LA, Brazier V (2005) Glaciated valley systems. In: Evans DJA (ed) (2005) Glacial landsystems. Hodder Arnold, London, pp 372–406
Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci Rev 114:156–174
Bickerton RW, Matthews JA (1993) Little ice age’ variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. J Quaternary Sci 8:45–66
Blikra LH, Hole PA, Rye N (1989) Skred i Norge—Hurtige massebevegelser og avsetningstyper i alpine områder, Indre Nordfjord. Trondheim: Norges Geologiske Undersøkelse, Skrifter 92
Blikra LH, Longva O, Braathen A, Anda E, Dehls JF, Stalsberg K (2006) Rock slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans SG, Mugnozza GS, Strom A, Hermanns RL (eds) (2006) Landslides from massive rock slope failure. Springer, Dordrecht, pp 475–496
Bøe R, Longva O, Lepland A, Blikra LH, Sønstegaard E, Haflidason H, Bryn P, Lien R (2004) Postglacial mass movements and their causes in fjords and lakes in western Norway. Norw J Geol 84:35–55
Bogen J, Wold B, Østrem G (1989) Historic glacier variations in Scandinavia. In: Oerlemans J (ed) (1989) Glacier fluctuations and climatic change. Reidel, Dordrecht, pp 109–128
Bogen J, Xu M, Kennie P (2015) The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Proc Land 40:942–952
Breien H, De Blasio F, Elvehøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 5:271–280
IPCC (2014) Climate change 2013: the physical science basis. Contribution of working group I to the 5th Assessment report of the Intergovernmental Panel on Climate Change. Cambridge
Chinn TJH, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand—a comparison for their glaciological and meteorological causes. Geogr Ann A 87:141–157
Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3071
Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228
Curry AM (2000) Observations on the distribution of paraglacial reworking of glacigenic drift in western Norway. Norsk Geogr Tiddskr 54:139–147
Curry AM, Ballantyne CK (1999) Paraglacial modification of glacigenic sediment. Geogr Ann A 81:409–419
Engelhardt M, Schuler TV, Andreassen LM (2015) Sensitivities of glacier mass balance and runoff to climate perturbations in Norway. Ann Glaciol 56:71–88
Engeset RV, Schuler TV, Jackson M (2005) Analysis of the first jökulhlaup at Blåmannsisen, northern Norway, and implications for future events. Ann Glaciol 42:35–41
Etzelmüller B, Romstad B, Fjellanger J (2007) Automatic regional classification of topography in Norway. Norw J Geol 87:167–180
Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128
Fægri K (1934) Über die längenänderungen einiger gletscher des Jostedalsbre und die dadurch bedingten Pflanzensukzessionen. Bergen: Bergens Museums Årbok 1933—Naturvidenskapelig rekke No. 7
Faugli PE (1987) FoU i Jostedøla. Norwegian water resources and energy directorate (NVE), Oslo, Publikasjoner V 6
Fleig AK (2013) Norwegian hydrological reference dataset for climate change studies. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 02–2013
Furunes T, Mykletun RJ (2012) Frozen adventure at risk? A 7-year follow-up study of Norwegian glacier tourism. Scand J Hosp Tour 12:324–348
Golombek R, Kittelsen SAC, Haddeland I (2012) Climate change: impacts on electricity markets in Western Europe. Clim Change 113:357–370
Grove JM (2001) The initiation of the “little ice age” in regions round the North Atlantic. Climatic Change 46:53–82
Grove JM (2004) The little ice age. Routledge, London
Hall CM (2006) The geography of tourism and recreation: environment. Place and Space, Routledge, London
Hambrey MJ, Alean J (2004) Glaciers, 2nd edn. University Press, Cambridge
Hausberg JE, Andreassen LM (2009) Satellitbasert brekartlegging I Lyngen. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 2009/7
Hay J, Elliot T (2008) New Zealand’s glaciers: key national and global assets for science and society. In: Orlove B, Wiegandt E, Luckman B (eds) (2008) Darkening peaks: glacier retreat, science, and society. University of California Press, Berkeley, pp 185–195
Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse J, Ivy-Ochs S, Hilger P (2017) Rock-avalanche activity in W and S Norway peaks after the retreat of the Scandinavian ice sheet. In: Mikoš M, Vilimek V, Yin Y (eds) (2017) Advancing culture of living with landslides (WLF 2017). Springer, Cham, pp 331–338
Hill JL, Vater AE, Geary AP, Matthews JA (2018) Chronosequences of ant-nest mounds from glacier forelands of Jostedalsbreen, southern Norway: insights into the distribution, succession and geo-ecology of red wood ants (Formica lugubris and F. aquilonia). Holocene 28:1113–1130
Hoek WZ, Bos JAA (2007) Early Holocene climate oscillations—causes and consequences. Quaternary Sci Rev 26:1901–1906
Imhof P, Nesje A, Nussbaumer SU (2011) Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little ice age’ until the present: The influence of the North Atlantic Oscillation. Holocene 22:235–247
Jackson M, Regulina G (2014) Inventory of glacier-related hazardous events in Norway. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 83–2014
Jansen HL, Riis Simonsen J, Dahl SO, Bakke J, Ringkjøb Nielsen P (2016) Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. Holocene 26:736–755
Kalsnes B, Nadim F, Hermanns RL, Hygen HO, Petkovic G, Dolva BK, Berg H, Høgvold DO (2016) Landslide risk management in Norway. In: Ho K, Lacasse S, Picarelli L (eds) (2016) Slope safety preparedness for impact of climate change. CRC Press, Boca Raton, pp 215–251
Kjøllmoen B (2017a) Homogenisering av korte massebalanseserier I Norge. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 33/2017
Kjøllmoen B (2017b) Glaciological investigations in Norway 2016. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 76/2017
Kjøllmoen B (2018) Glaciological investigations in Norway 2017. Norwegian water resources and energy directorate (NVE), Oslo, Rapport 82/2018
Klemsdal T, Sjulsen E (1988) The Norwegian macro-landforms: definition, distribution and system of evolution. Norsk Geogr Tidsskr 42:133–147
Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana J-F (2014) Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1267–1326.
Lappegard G, Beldring S, Roald LA, Engen-Skaugen T, Førland EJ (2006) Projection of future streamflow in glaciated and non-glaciated catchments in Norway. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Oppdragsrapport A pp 9–2006
Laumann T, Nesje A (2014) Spørteggbreen, western Norway, in the past, present and future: Simulations with a two-dimensional dynamical glacier model. Holocene 24:842–852
Laute K, Beylich AA (2013) Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology 188:12–30
Laute K, Beylich AA (2014) Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology 218:16–34
Lawrence D (2016) Klimaendring og framtidige flommer i Norge. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Rapport pp 81–2016
Løset O (2019) Turistar blir straffa for rekordsommar i fjor. https://www.nrk.no/sognogfjordane/turistar-blir-straffa-for-rekordsommar-i-fjor-1.14591188. Accessed 20 June 2019
Lozán JL, Grassl H, Kasang D, Nolz D, Escher-Vetter H (2015) Warnsignal klima: das eis der erde. Universität Hamburg (Wissenschaftliche Auswertungen)
Mangerud J (2004) Ice sheets limits in Norway and on the Norwegian continental shelf. In: Ehlers J, Gibbard PL (eds) (2004) Quaternary glaciations extent and chronology. Elsevier, Amsterdam, pp 271–294
Marr P, Löffler J (2017) Establishing a multi-proxy approach to alpine blockfield evolution in south-central Norway. AUC Geogr 52:219–236
Marr P, Winkler S, Löffler J (2018) Investigations on blockfields and related landforms at Blåhø (Southern Norway) using Schmidt-hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geogr Ann A 100:285–306
Marr P, Winkler S, Löffler J (2019) Schmidt-hammer exposure-age dating (SHD) performed on periglacial and related landforms in Opplendskedalen, Geirangerfjellet, Norway: Implications for mid- and late-Holocene climate variability. Holocene 29:97–109
Marr P, Winkler S, Binnie SA, Löffler J (2019b) 10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway. E&G Quaternary Sci J 69:1–12. (accepted)
Matthews JA (1979) The vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. I. Introduction and approaches involving classification. J Biogeogr 6:17–47
Matthews JA (1979) The vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. II. Approaches involving ordination and general conclusions. J Biogeogr 6:133–167
Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge University Press, Cambridge
Matthews JA (2005) ‘Little ice age’ glacier variations in Jotunheimen, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. Holocene 15:1–19
Matthews JA, Dresser P-Q (2008) Holocene glacier variation chronology of the Smørstabbtindan massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events. Holocene 18:181–201
Matthews JA, Vater AE (2015) Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. CATENA 135:219–230
Matthews JA, Whittaker RJ (1987) Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arctic Alpine Res 19:385–395
Matthews JA, Winkler S, Wilson P (2014) Age and origin of ice-cored moraines in Jotunheimen and Breheimen, Southern Norway: Insights from Schmidt-hammer exposure-age dating. Geogr Ann A 96:531–548
Matthews JA, Winkler S, Wilson P, Tomkins MD, Dortch JM, Mourne RW, Hill JL, Owen G, Vater AE (2018) Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating in Jotunheimen, southern Norway. Boreas 47:1144–1169
Mercier D (2008) Paraglacial and paraperiglacial landsystems: concepts, temporal scales and spatial distribution. Géomorphologie 4:223–234
Mutz S, Paeth H, Winkler S (2016) Modelling of future mass balance changes of Norwegian glaciers by application of a dynamical-statistical model. Clim Dynam 46:1581–1597
Nesje A (1989) Glacier-front variations at the outlet glaciers from Jostedalsbreen and climate in the Jostedalsbre region of western Norway in the period 1901–1980. Norsk Geogr Tidsskr 43:3–17
Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. Holocene 15:1245–1252
Nesje A (2009) Late pleistocene and Holocene alpine glacier fluctuation in Scandinavia. Quaternary Sci Rev 28:2119–2136
Nesje A, Dahl SO (2003) The ‘Little ice age’—only temperature? Holocene 13:139–145
Nesje A, Matthews JA (2011) The Briksdalsbre event: a winter precipitation-induced decadal-scale glacial advance in southern Norway in the AD 1990s and its implications. Holocene 22:249–261
Nesje A, Johannesen T, Birks HJB (1995) Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. Holocene 5:343–347
Nesje A, Dahl SO, Andersson C, Matthews JA (2000) The lacustrine sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quaternary Sci Rev 19:1047–1065
Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008a) Norwegian mountain glaciers in the past, present and future. Global Planet Change 60:10–27
Nesje A, Dahl SO, Thun T, Nordli Ø (2008b) The “Little ice age” glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dynam 30:789–801
NOU (2010) Tilpassing til eit klima i endring. Oslo, Noregs Offentlege Utgreiingar 2010:10
Nussbaumer SU, Nesje A, Zumbühl HJ (2011) Historical glacier fluctuations of Jostedalsbreen and folgefonna (southern Norway) reassessed by new pictorial and written evidence. Holocene 21:455–471
NVE (2019) Updated glacier data base—https://www.nve.no/hydrologi/bre/bredata/ (last accessed 30.01.2019)
NCCS (2017) Climate in Norway 2100—a knowledge base for climate adaptations, NCCS report no. 1/2017, Norwegian Centre for Climate Services, Oslo
Østrem G, Ziegler T (1969) Atlas over breer i Sør-Norge. Meddelelse nr 20 fra Hydrologisk avdeling, NVE
Østrem G, Haakensen N, Melander O (1973) Atlas over breer i Nord-Skandinavia. Oslo: NVE, Meddelelser fra Hydrologisk Avdeling p 22
Østrem G, Dale Selvig K, Tandberg K (1988) Atlas over breer i Sør-Norge, Oslo: NVE, Meddelelser fra Hydrologisk Avdeling p 61
Paul F, Andreassen LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. J Glaciol 55:607–618
Paul F, Andreassen LM, Winsvold SH (2011) A new glacial inventory for the Jostedalsbreen region, Norway, from landsat TM scenes of 2006 and changes since 1966. Ann Glaciol 52:153–162
Pohjola VA, Rogers JC (1997) Atmospheric circulation and variations in Scandinavian glacier mass balance. Quaternary Res 47:29–36
Prasad S, Brauer A, Rein B, Negendank JFW (2006) Rapid climate change during the early Holocene in western Europe and Greenland. Holocene 16:153–158
Purdie H (2013) Glacier retreat and tourism: insights from New Zealand. Mt Res Dev 33:463–472
Purdie H, Gomez C, Espiner S (2015) Glacier recession and the changing rockfall hazard: Implications for glacier tourism. New Zeal Geogr 71:189–202
Quincey D, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet Change 56:137–152
Rasmussen LA (2004) Altitude variation of glacier mass balance in Scandinavia. Geophys Res Lett 31:L13401
Robbins JA, Matthews JA (2009) Pioneer vegetation on glacier forelands in southern Norway: emerging communities? J Veg Sci 20:889–902
Robbins JA, Matthews JA (2010) Regional variation in successional trajectories and rates of vegetation change on glacier forelands in South-Central Norway. Arct Antarct Alp Res 42:351–361
Robbins JA, Matthews JA (2014) Use of ecological indicator values to investigate successional change in boreal to high-alpine glacier-foreland chronosequences, southern Norway. Holocene 24:1453–1464
Saarinen J, Tervo K (2006) Perceptions and adaptation strategies of the tourism industry to climate change: the case of finnish nature-based tourism entrepreneurs. Int J Innov Sustain Dev 1:214–228
Solomina ON, Bradley RS, Hodgson DA, Ivy-Ochs S, Jomelli V, Mackintosh AN, Nesje A, Owen LA, Wanner H, Wiles GC, Young NE (2016) Glacier fluctuations during the past 2000 years. Quaternary Sci Rev 149:61–90
Steen R (2016) Klimatilpasning i energiforsyningen 2009–2016—Hvor står vi nå? Norwegian water resources and energy directorate (NVE), Oslo, Rapport pp 76–216
Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature—two case studies. Climatic Change 90:413–441
Stewart EJ, Wilson J, Espiner S, Purdie H, Lemieux C, Dawson J (2016) Implications of climate change for glacier tourism. Tourism Geogr 18:377–398
Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geog 36:421–439
Stokes CR, Andreassen LM, Champion MR, Corner GD (2018) Widespread and accelerating glacier retreat on the Lyngen peninsula, northern Norway, since their ‘little ice age’ maximum. J Glaciol 64:100–118
Vater AE (2012) Insect and arachnid colonization on the Storbreen glacier foreland, Jotunheimen, Norway: persistence of taxa suggests an alternative model of succession. Holocene 22:1123–1133
Vater AE, Matthews JA (2013) Testing the ‘addition and persistence model’ of invertebrate succession in a subalpine glacier-foreland chronosequence: fåbergstølsbreen, southern Norway. Holocene 23:1151–1162
Vater AE, Matthews JA (2015) Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25:108–129
Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sc 19:913–931
Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK (2016) Evidence for changes in the magnitude and frequency of observed rainfall versus snowmelt driven floods in Norway. J Hydrol 538:33–48
Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge
Winkler S (1996) Front variations of outlet glaciers from Jostedalsbreen, western Norway, during the twentieth century. Norg Geol Unders B 431:33–47
Winkler S (2002) Von der ‘kleinen eiszeit’ zum ‘globalen gletscherrückzug’—eignen sich gletscher als klimazeugen? Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse, p 3
Winkler S (2003) A new interpretation of the date of the ‘little ice age’ maximum at Svartisen and Okstindan, northern Norway. Holocene 13:83–95
Winkler S (2009) Gletscher und ihre landschaften. Wissenschaftliche Buchgesellschaft/Primus, Darmstadt
Winkler S (2015) Die gegenwärtige situation der gletscher auf neuseeland. In: Lozán JL, Grassl H, Kasang D, Nolz D, Escher-Vetter H (eds) (2015) Warnsignal klima: das eis der erde. Universität Hamburg (Wissenschaftliche Auswertungen), pp 123–129
Winkler S (2019) Terminal moraine formation processes and geomorphology of glacier forelands at selected outlet glaciers of Jostedalsbreen, South Norway. In: Beylich AA (ed) (2019) Landscapes and landforms of norway. Springer, Dordrecht
Winkler S, Haakensen N (1999) Kritische überprüfung der möglichkeit zur prognose des gletscherverhaltens auf grundlage von modellierungen—dargestellt anhand von regionalen beispielen aus Norwegen. Petermann Geogr Mitt 143:291–304
Winkler S, Matthews JA (2010) Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology 116:87–106
Winkler S, Nesje A (2009) Perturbation of climatic response at maritime glaciers? Erdkunde 63:229–244
Winkler S, Haakensen N, Nesje A, Rye N (1997) Glaziale dynamik in westnorwegen—ablauf und ursachen des aktuellen gletschervorstoßes am jostedalsbreen. Petermann Geogr Mitt 141:43–63
Winkler S, Matthews JA, Shakesby RA, Dresser PQ (2003) Glacier variations in Breheimen, southern Norway: dating little ice age moraine sequences at seven low-altitude glaciers. J Quaternary Sci 18:395–413
Winkler S, Elvehøy H, Nesje A (2009) Glacier fluctuations of Jostedalsbreen, western Norway, during the past 20 years: the sensitive response of maritime mountain glaciers. Holocene 19:389–408
Winkler S, Chinn T, Gärtner-Roer I, Nussbaumer SU, Zemp M, Zumbühl HJ (2010) An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64:97–118
Winkler S, Donner A, Suntrup gen. Tintrup A (2019) Periglacial landforms in Jotunheimen, central southern Norway, and their altitudinal distribution. In: Beylich AA (ed): Landscapes and landforms of norway. Springer, Dordrecht
Winsvold SH, Andreassen LM, Kienholz C (2014) Glacier area and length changes from repeat inventories. Cryosphere 8:1885–1903
Wittmeier HE, Bakke J, Vasskog K, Trachsel M (2015) Reconstructing holocene glacial activity at landfjordjøkulen, arctic norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments. Quaternary Sci Rev 114:78–99
Zängl W, Hamberger S (2004) Gletscher im treibhaus: eine fotographische zeitreise in die alpine eiswelt. Steinfurt, Tecklenborg
Zemp M, Roer I, Kääb A, Hoelzle M, Paul F, Haeberli W (2008) Global glaciers changes: facts and figures. WGMS/UNEP (Zürich)
Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurðsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762
Zemp M, Nussbaumer SU, Gärtner-Roer I, Huber J, Machguth H, Paul F, Hoelzle M (2017) Global glacier change bulletin no. 2 (2014–2015). ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, WGMS (Zürich)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Marr, P., Winkler, S., Löffler, J. (2022). Environmental and Socio-Economic Consequences of Recent Mountain Glacier Fluctuations in Norway. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-70238-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70237-3
Online ISBN: 978-3-030-70238-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)