Skip to main content

The World’s Mountains in the Anthropocene

  • Chapter
  • First Online:
Mountain Landscapes in Transition

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

This review summarizes current understanding of drivers for change and of the impact of accelerating global changes on mountains, encompassing effects of climate change and globalization. Mountain regions with complex human–environment systems are known to exhibit a distinct vulnerability to the current fundamental shift in the Earth System driven by human activities. We examine indicators of the mountain cryosphere and hydrosphere, of mountain biodiversity, and of land use and land cover patterns, and show that mountain environments in the Anthropocene are changing on all continents at an unprecedented rate. Rates of climate warming in the world’s mountains substantially exceed the global mean, with dramatic effects on cryosphere, hydrosphere, and biosphere. Current climatic changes result in significantly declining snow-covered areas, widespread decreases in area, length, and volume of glaciers and related hydrological changes, and widespread permafrost degradation. Complex adaptations of mountain biota to novel constellations of bioclimatic and other site conditions are reflected in upslope migration and range shifts, treeline dynamics, invasion of non-native species, phenological shifts, and changes in primary production. Changes in mountain biodiversity are associated with modified structure, species composition, and functioning of alpine ecosystems, and compromise ecosystem services. Human systems have been negatively impacted by recent environmental changes, with both inhabitants of mountain regions as well as people living in surrounding lowlands being affected. Simultaneously, accelerating processes of economic globalization cause adaptation strategies in mountain communities as expressed clearly in changing land use systems and mobility patterns, and in increasing marginalization of peripheral mountains and highlands. The current state of the world’s mountains clearly indicates that global efforts to date have been insufficient to make significant progress towards implementing the Sustainable Development Goals of the 2030 Agenda for Sustainable Development, adopted by all United Nations member states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The information on mountain systems in Asia compiled in this paper is expanded and updated from Schickhoff & Mal (2020).

References

  • APCC (Austrian Panel on Climate Change) (2014) Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). APCC-Verlag der Österreichischen Akademie der Wissenschaften, Vienna

    Google Scholar 

  • Aakala T, Hari P, Dengel S, Newberry SL, Mizunuma T, Grace J (2014) A prominent stepwise advance of the tree line in North-East Finland. J Ecol 102:1582–1591

    Google Scholar 

  • Abate Y (1993) The society and its environment. In: Ofcansky TP, Berry L (eds) Ethiopia: a country study. Federal Research Division, Library of Congress, Washington, DC, pp 69–141

    Google Scholar 

  • Abatzoglou JT, Rupp DE, Mote PW (2014) Seasonal climate variability and change in the Pacific Northwest of the United States. J Clim 27:2125–2142

    Google Scholar 

  • Abrha H, Birhane E, Hagos H, Manaye A (2018) Predicting suitable habitats of endangered Juniperus procera tree under climate change in northern Ethiopia. J Sustain For 37:842–853

    Google Scholar 

  • Acocks JPH (1988) Veld types of South Africa. Memoirs of the botanical survey of South Africa 57. Botanical Research Institute, Pretoria

    Google Scholar 

  • Adhikari BS, Kumar R, Singh SP (2018) Early snowmelt impact on herb species composition, diversity and phenology in a western Himalayan treeline ecotone. Trop Ecol 59:365–382

    Google Scholar 

  • Aerts R, Van Overtveld K, November E, Wassie A, Abiyu A et al (2016) Conservation of the Ethiopian church forests: threats, opportunities and implications for their management. Sci Total Environ 551:404–414

    Google Scholar 

  • Agrawala S, Moehner A, Hemp A, Aalst MV, Hitz S et al (2003) Development and climate change in Tanzania: Focus on Mount Kilimanjaro. OECD, Paris

    Google Scholar 

  • El Aich A (2018) Changes in livestock farming systems in the Moroccan Atlas Mountains. Open Agric 3:131–137

    Google Scholar 

  • Aide TM, Grau HR, Graesser J, Andrade-Nuñez MJ, Aráoz E et al (2019) Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: satellite image interpretation and expert validation. Glob Change Biol 25:2112–2126

    Google Scholar 

  • Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim 10:1393–1404

    Google Scholar 

  • Akatov PV (2009) Changes in the upper limits of tree species distribution in the western Caucasus (Belaya river basin) related to recent climate warming. Russ J Ecol 40:33–38

    Google Scholar 

  • Akhmadov KM, Breckle SW, Breckle U (2006) Effects of grazing on biodiversity, productivity, and soil erosion of alpine pastures in Tajik Mountains. In: Spehn EM, Liberman M, Körner C (eds) Land use change and mountain biodiversity. Taylor & Francis, Boca Raton-London-New York, pp 239–247

    Google Scholar 

  • Alagona PS, Paulson T, Esch AB, Marter-Kenyon J (2016) Population and land use. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 75–94

    Google Scholar 

  • Albrich K, Rammer W, Seidl R (2020) Climate change causes critical transitions and irreversible alterations of mountain forests. Glob Change Biol 26:4013–4027

    Google Scholar 

  • Alexander JM, Lembrechts JJ, Cavieres LA, Daehler C, Haider S et al (2016) Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alp Bot 126:89–103

    Google Scholar 

  • Allen JA, Brown CS, Stohlgren TJ (2009) Non-native plant invasions of United States national parks. Biol Invasions 11:2195–2207

    Google Scholar 

  • Allen SK, Cox SC, Owens IF (2011) Rock avalanches and other landslides in the Central southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8:33–48

    Google Scholar 

  • Allen SK, Fiddes J, Linsbauer A, Randhawa SS, Saklani B, Salzmann N (2016) Permafrost studies in Kullu district, Himachal Pradesh. Curr Sci 11:257–260

    Google Scholar 

  • Allen CD (2002) Lots of lightning and plenty of people: an ecological history of fire in the upland Southwest. In: Vale TR (ed) Fire, native peoples, and the natural landscape. Island Press, Washington DC, pp 143–194

    Google Scholar 

  • Allen RB, Lee WG (2006) Biological invasions in New Zealand. Ecological Studies 186, Springer, Berlin

    Google Scholar 

  • Amano T, Freckleton RP, Queenborough SA, Doxford SW, Smithers RJ, Sparks TH, Sutherland WJ (2014) Links between plant species’ spatial and temporal responses to a warming climate. Proc Roy Soc B: Biol Sci 281:20133017

    Google Scholar 

  • Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. Proc Roy Soc B: Biol Sci 277:2451–2457

    Google Scholar 

  • Ameha A, Meilby H, Feyisa GL (2016) Impacts of participatory forest management on species composition and forest structure in Ethiopia. Int J Biodivers Sci Ecosyst Serv Manage 12:139–153

    Google Scholar 

  • Ameha A, Nielsen OJ, Larsen HO (2014) Impacts of access and benefit sharing on livelihoods and forest: case of participatory forest management in Ethiopia. Ecol Econ 97:162–171

    Google Scholar 

  • Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641

    Google Scholar 

  • Améztegui A, Coll L, Brotons L, Ninot JM (2016) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr 25:263–273

    Google Scholar 

  • Anderson K, Fawcett D, Cugulliere A, Benford S, Jones D, Leng R (2020) Vegetation expansion in the subnival Hindu Kush Himalaya. Glob Change Biol 26:1608–1625

    Google Scholar 

  • Anderson EP, Marengo J, Villalba R, Halloy S, Young B et al (2011) Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, Paris, pp 1–18

    Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Belart JM (2020) Glacier change in Norway since the 1960s—an overview of mass balance, area, length and surface elevation changes. J Glaciol 66:313–328

    Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV (2016) Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. Cryosphere 10:535–552

    Google Scholar 

  • Anup KC, Rijal K, Sapkota RP (2015) Role of ecotourism in environmental conservation and socioeconomic development in Annapurna conservation area, Nepal. Int J Sustain Dev World Ecol 22:251–258

    Google Scholar 

  • Anyah RO, Qiu W (2012) Characteristic 20th and 21st century precipitation and temperature patterns and changes over the Greater Horn of Africa. Int J Climatol 32:347–363

    Google Scholar 

  • Aravena JC, Lara A, Wolodarky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forest at the upper tree line of southern Chilean Patagonia. Rev Chil Hist Nat 75:361–376

    Google Scholar 

  • Aryal S, Maraseni TN, Cockfield G (2014) Sustainability of transhumance grazing systems under socio-economic threats in Langtang, Nepal. J Mountain Sci 11:1023–1034

    Google Scholar 

  • Asam S, Callegari M, Matiu M, Fiore G, De Gregorio L et al (2018) Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps—an earth observation-based analysis. Remote Sens 10:1757

    Google Scholar 

  • Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N et al (2018) Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric For Meteorol 252:220–230

    Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A et al (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Google Scholar 

  • Ault TR, Macalady AK, Pederson GT, Betancourt JL, Schwartz MD (2011) Northern hemisphere modes of variability and the timing of spring in western North America. J Clim 24:4003–4014

    Google Scholar 

  • Austrheim G, Solberg EJ, Mysterud A (2011) Spatio-temporal variation in large herbivore pressure in Norway during 1949–1999: has decreased grazing by livestock been countered by increased browsing by cervids? Wildl Biol 17:286–298

    Google Scholar 

  • Azam MF, Wagnon P, Berthier E, Vincent C, Fujita K, Kargel JS (2018) Review of the status and mass changes of Himalayan-Karakoram glaciers. J Glaciol 64:61–74

    Google Scholar 

  • Babulo B, Muys B, Nega F, Tollens E, Nyssen J, Deckers J, Mathijs E (2008) Household livelihood strategies and forest dependence in the highlands of Tigray, northern Ethiopia. Agric Syst 98:147–155

    Google Scholar 

  • Bacchiocchi SC, Zerbe S, Cavieres LA, Wellstein C (2019) Impact of ski piste management on mountain grassland ecosystems in the southern Alps. Sci Total Environ 665:959–967

    Google Scholar 

  • Bach AJ, Price LW (2013) Mountain climate. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. University of California Press, Berkeley-Los Angeles, Physical and human dimensions, pp 41–84

    Google Scholar 

  • Bader MY, Van Geloof I, Rietkerk M (2007) High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol 191:33–45

    Google Scholar 

  • Bader MY, Llambí LD, Case BS, Buckley HL, Toivonen JM et al (2020) A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 43:1–24

    Google Scholar 

  • Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LR et al (2017) Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol 32:211–226

    Google Scholar 

  • Bahn M, Körner C (2003) Recent increases in summit flora caused by warming in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 437–441

    Google Scholar 

  • Baied CA, Wheeler JC (1993) Evolution of high Andean puna ecosystems: environment, climate, and culture change over the last 12,000 years in the Central Andes. Mt Res Dev 13:145–156

    Google Scholar 

  • Bajracharya SB, Chaudhary RP, Basnet G (2015) Biodiversity conservation and protected area management in Nepal. In: Miehe G, Pendry CA, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, pp 473–486

    Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F, Bajracharya OR, Baidya S (2014a) Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data. ICIMOD, Kathmandu

    Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F (2014b) The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann Glaciol 55:159–166

    Google Scholar 

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209

    Google Scholar 

  • Balthazar V, Vanacker V, Molina A, Lambin EF (2015) Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol Ind 48:63–75

    Google Scholar 

  • Baniya B, Tang Q, Huang Z, Sun S, Techato KA (2018) Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal. Forests 9:329

    Google Scholar 

  • Bao G, Bao Y, Sanjjava A, Qin Z, Zhou Y, Xu G (2015) NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. Int J Climatol 35:4293–4306

    Google Scholar 

  • Baojuan H, Weijun S, Yetang W, Zhongqin L (2017) Glacier shrinkage in the Chinese Tien Shan Mountains from 1959/1972 to 2010/2012. Arct Antarct Alp Res 49:213–225

    Google Scholar 

  • Barakat A, Khellouk R, El Jazouli A, Touhami F, Nadem S (2018) Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data. Geol Ecol Landscapes 2:203–215

    Google Scholar 

  • Barandun M, Huss M, Usubaliev R, Azisov E, Berthier E et al (2018) Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 12:1899–1919

    Google Scholar 

  • Baranova A, Schickhoff U, Wang S, Jin M (2016) Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China). Hacquetia 15:21–35

    Google Scholar 

  • Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM et al (2013) Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob Change Biol 19:3167–3183

    Google Scholar 

  • Barman S, Bhattacharjya RK (2015) Change in snow cover area of Brahmaputra river basin and its sensitivity to temperature. Environ Syst Res 4:16

    Google Scholar 

  • Del Barrio G, Sanjuan ME, Hirche A, Yassin M, Ruiz A et al (2016) Land degradation states and trends in the northwestern Maghreb drylands, 1998–2008. Remote Sensing 8:603

    Google Scholar 

  • Barros A, Pickering CM (2014) Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the southern hemisphere. Mt Res Dev 34:13–26

    Google Scholar 

  • Barthlott W, Hostert A, Kier G, Küper W, Kreft H et al (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315

    Google Scholar 

  • Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92:61–83

    Google Scholar 

  • Basagic HJ, Fountain AG (2011) Quantifying 20th century glacier change in the Sierra Nevada, California. Arct Antarct Alp Res 43:317–330

    Google Scholar 

  • Basu S, Mohanty S, Sanyal P (2020) Possible role of warming on Indian summer monsoon precipitation over the North-Central Indian subcontinent. Hydrol Sci J 65:660–670

    Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288

    Google Scholar 

  • Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff VC et al (2011) Patterns and drivers of post-socialist farmland abandonment in western Ukraine. Land Use Policy 28:552–562

    Google Scholar 

  • Baumhackl H (2019) Peru “land of the Incas”. A tourism destination on the rise. J Tourism Hospitality Manag 7:95–116

    Google Scholar 

  • Beazley RE, Lassoie JP (2017) Himalayan mobilities: an exploration of the impact of expanding rural road networks on social and ecological systems in the Nepalese Himalaya. Springer, Cham

    Google Scholar 

  • Bebbington A, Bebbington DH, Bury J, Lingan J, Muñoz JP, Scurrah M (2008) Mining and social movements: struggles over livelihood and rural territorial development in the Andes. World Dev 36:2888–2905

    Google Scholar 

  • Bebi P, Seidl R, Motta R, Fuhr M, Firm D et al (2017) Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For Ecol Manage 388:43–56

    Google Scholar 

  • Beck PS, Goetz SJ (2012) Corrigendum: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett 7:029501

    Google Scholar 

  • Beck PS, Juday GP, Alix C, Barber VA, Winslow SE et al (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379

    Google Scholar 

  • Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci 105:4197–4202

    Google Scholar 

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183

    Google Scholar 

  • Beedle MJ, Menounos B, Wheate R (2015) Glacier change in the Cariboo Mountains, British Columbia, Canada (1952–2005). Cryosphere 9:65–80

    Google Scholar 

  • Beer R, Kaiser F, Schmidt K, Ammann B, Carraro G, Grisa E, Tinner W (2008) Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quatern Sci Rev 27:621–632

    Google Scholar 

  • Beesley D (2004) Crow’s range: an environmental history of the Sierra Nevada. University of Nevada Press, Reno

    Google Scholar 

  • Bellingham PJ, Towns DR, Cameron EK, Davis JJ, Wardle DA, Wilmshurst JM, Mulder CP (2010) New Zealand island restoration: seabirds, predators, and the importance of history. N Z J Ecol 34:115–136

    Google Scholar 

  • Bello JC, Báez M, Gómez MF, Orrego O, Nägele L (2014) Biodiversidad 2014. Estado y tendencias de la biodiversidad continental de Colombia. Instituto Alexander von Humboldt, Bogotá DC, Colombia

    Google Scholar 

  • Belmecheri S, Babst F, Wahl ER, Stahle DW, Trouet V (2016) Multi-century evaluation of Sierra Nevada snowpack. Nat Clim Chang 6:2–3

    Google Scholar 

  • Belonovskaya E, Gracheva R, Shorkunov I, Vinogradova V (2016) Grasslands of intermontane basins of central Caucasus: land use legacies and present-day state. Hacquetia 15:37–47

    Google Scholar 

  • Bencherifa A (1990) Demography and cultural ecology of the Atlas Mountains of Morocco: some new hypotheses. In: Messerli B, Hurni H (eds) African mountains and highlands: problems and perspectives. Walsworth Press, Marceline, pp 369–377

    Google Scholar 

  • Beniston M, Stoffel M (2014) Assessing the impacts of climatic change on mountain water resources. Sci Total Environ 493:1129–1137

    Google Scholar 

  • Beniston M, Stoffel M, Hill M (2011) Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? Examples from the European “ACQWA” project. Environ Sci Policy 14:734–743

    Google Scholar 

  • Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E et al. (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12:759-794

    Google Scholar 

  • Bentley LK, Robertson MP, Barker NP (2019) Range contraction to a higher elevation: the likely future of the montane vegetation in South Africa and Lesotho. Biodivers Conserv 28:131–153

    Google Scholar 

  • Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL et al (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Google Scholar 

  • Bergamini A, Ungricht S, Hofmann H (2009) An elevational shift of cryophilous bryophytes in the last century—an effect of climate warming? Divers Distrib 15:871–879

    Google Scholar 

  • Bergmann C, Gerwin M, Nüsser M, Sax WS (2012) State policy and local performance: pasture use and pastoral practices in the Kumaon Himalaya. In: Kreutzmann H (ed) Pastoral practices in High Asia. Springer, Dordrecht, pp 175–194

    Google Scholar 

  • Berkelhammer M, Stefanescu IC, Joiner J, Anderson L (2017) High sensitivity of gross primary production in the Rocky Mountains to summer rain. Geophys Res Lett 44:3643–3652

    Google Scholar 

  • Berner LT, Law BE, Hudiburg TW (2017) Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US. Biogeosciences 14:365–378

    Google Scholar 

  • Berriane M, De Haas H, Natter K (2015) Introduction: revisiting Moroccan migrations. J North Afr Stud 20:503–521

    Google Scholar 

  • Berthier É, Brun F (2019) Karakoram geodetic glacier mass balances between 2008 and 2016: persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. J Glaciol 65:494–507

    Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, De Ruffray P et al (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520

    Google Scholar 

  • Beug HJ, Miehe G (1999) Vegetation history and human impact in the eastern Central-Himalaya (Langtang and Helambu, Nepal). Dissertationes Botanicae 318. Cramer, Berlin-Stuttgart

    Google Scholar 

  • Bewket W (2002) Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile basin, Ethiopia. Mt Res Dev 22:263–269

    Google Scholar 

  • Bezák P, Halada L (2010) Sustainable management recommendations to reduce the loss of agricultural biodiversity in the mountain regions of NE Slovakia. Mt Res Dev 30:192–204

    Google Scholar 

  • Bhagawati R, Bhagawati K, Jini D, Alone RA, Singh R et al (2017) Review on climate change and its impact on agriculture of Arunachal Pradesh in the northeastern Himalayan region of India. Nat Environ Pollut Technol 16:535

    Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr Sci 102:489–494

    Google Scholar 

  • Bhambri R, Hewitt K, Kawishwar P, Pratap B (2017) Surge-type and surge-modified glaciers in the Karakoram. Sci Rep 7:1–14

    Google Scholar 

  • Bhasin V (2011) Pastoralists of Himalayas. J Hum Ecol 33:147–177

    Google Scholar 

  • Bhattacharjee A, Anadon JD, Lohman DJ, Doleck T, Lakhankar T et al (2017) The impact of climate change on biodiversity in Nepal: current knowledge, lacunae, and opportunities. Climate 5:80

    Google Scholar 

  • Bhattacharya A, Bolch T, Mukherjee K, Pieczonka T, Kropáček J, Buchroithner MF (2016) Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. J Glaciol 62:1115–1133

    Google Scholar 

  • Bhattacharyya A, Shah SK, Chaudhary V (2006) Would tree ring data of Betula utilis be potential for the analysis of Himalayan glacial fluctuations? Curr Sci 91:754–761

    Google Scholar 

  • Bhattarai KR, Måren IE, Subedi SC (2014) Biodiversity and invasibility: distribution patterns of invasive plant species in the Himalayas, Nepal. J Mt Sci 11:688–696

    Google Scholar 

  • Bhutiyani MR (2015) Climate change in the northwestern Himalayas. In: Joshi R, Kumar K, Palni LMS (eds) Dynamics of climate change and water resources of northwestern Himalaya. Springer, Cham, pp 85–96

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Clim Change 85:159–177

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2008) Changing streamflow patterns in the rivers of northwestern Himalaya: implications of global warming in the 20th century. Curr Sci 95:618–626

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548

    Google Scholar 

  • Bhutiyani MR (2016) Spatial and temporal variability of climate change in high-altitude regions of NW Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change and dynamics of glaciers and vegetation in the Himalaya. Springer, Cham, pp 87–101

    Google Scholar 

  • Bi Y, Xu J, Yang J, Li Z, Gebrekirstos A et al (2017) Ring-widths of the above tree-line shrub Rhododendron reveal the change of minimum winter temperature over the past 211 years in southwestern China. Clim Dyn 48:3919–3933

    Google Scholar 

  • Bianchi E, Villalba R, Solarte A (2020) NDVI spatio-temporal patterns and climatic controls over northern Patagonia. Ecosystems 23:84–97

    Google Scholar 

  • Biemans H, Siderius C, Lutz AF, Nepal S, Ahmad B et al (2019) Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic plain. Nat Sustain 2:594–601

    Google Scholar 

  • Bilal H, Chamhuri S, Mokhtar MB, Kanniah KD (2019) Recent snow cover variation in the upper Indus basin of Gilgit Baltistan, Hindukush Karakoram Himalaya. J Mt Sci 16:296–308

    Google Scholar 

  • Bisht MPS, Rana V, Singh S (2016) Impact of glacial recession on the vegetational cover of Valley of Flowers National Park (a World Heritage Site), Central Himalaya, India. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 377–390

    Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G et al (2019) Permafrost is warming at a global scale. Nat Commun 10:264

    Google Scholar 

  • Blondel J (2006) The ‘design’of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Google Scholar 

  • Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, Oxford

    Google Scholar 

  • Blumler MA (2011) Invasive species, in geographical perspective. In: Millington A, Blumler M, Schickhoff U (eds) Handbook of biogeography. Sage Publ, London, pp 510–527

    Google Scholar 

  • Bobrowski M, Gerlitz L, Schickhoff U (2017) Modelling the potential distribution of Betula utilis in the Himalaya. Global Ecol Conserv 11:69–83

    Google Scholar 

  • Bocchiola D, Diolaiuti G (2013) Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theoret Appl Climatol 113:611–641

    Google Scholar 

  • Bock JH, Jolls CL, Lewis AC (1995) The effects of grazing on alpine vegetation: a comparison of the Central Caucasus, Republic of Georgia, with the Colorado Rocky Mountains, USA. Arct Alp Res 27:130–136

    Google Scholar 

  • Bodin J, Badeau V, Bruno E, Cluzeau C, Moisselin JM, Walther GR, Dupouey JL (2013) Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? J Veg Sci 24:269–283

    Google Scholar 

  • Van Bogaert R, Haneca K, Hoogesteger J, Jonasson C, De Dapper M, Callaghan TV (2011) A century of tree line changes in sub-arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J Biogeogr 38:907–921

    Google Scholar 

  • Boisvert-Marsh L, Périé C, De Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:1–33

    Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5:349–358

    Google Scholar 

  • Bolch T, Shea JM, Liu S, Azam FM, Gao Y et al (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya region. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment. Springer, Cham, pp 209–255

    Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens Environ 114:127–137

    Google Scholar 

  • Bolch T, Yao T, Kang S, Buchroithner MF, Scherer D et al (2010b) A glacier inventory for the western Nyainqentanglha range and the Nam Co basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433

    Google Scholar 

  • Bolton DK, Coops NC, Hermosilla T, Wulder MA, White JC (2018) Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environ Res Lett 13:084022

    Google Scholar 

  • Bonan DB, Christian JE, Christianson K (2019) Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. J Glaciol 65:580–594

    Google Scholar 

  • Bonekamp PN, De Kok RJ, Collier E, Immerzeel WW (2019) Contrasting meteorological drivers of the glacier mass balance between the Karakoram and Central Himalaya. Front Earth Sci 7:107

    Google Scholar 

  • Borchardt P, Oldeland J, Ponsens J, Schickhoff U (2013) Plant functional traits match grazing gradient and vegetation patterns on mountain pastures in SW Kyrgyzstan. Phytocoenologia 43:171–181

    Google Scholar 

  • Borchardt P, Schickhoff U, Scheitweiler S, Kulikov M (2011) Mountain pastures and grasslands in the SW Tien Shan, Kyrgyzstan—floristic patterns, environmental gradients, phytogeography, and grazing impact. J Mt Sci 8:363–373

    Google Scholar 

  • Borchardt P, Schmidt M, Schickhoff U (2010) Vegetation patterns in Kyrgyzstan’s walnut-fruit forests under the impact of changing forest use in post-Soviet transformation. Erde 141:255–275

    Google Scholar 

  • Bormann KJ, Brown RD, Derksen C, Painter TH (2018) Estimating snow-cover trends from space. Nat Clim Chang 8:924–928

    Google Scholar 

  • Borsdorf A, Hidalgo R (2009) Searching for fresh air, tranquillity and rural culture in the mountains: a new lifestyle for Chileans? Die Erde 140:275–292

    Google Scholar 

  • Borsdorf A, Stadel C (2015) The Andes: a geographical portrait. Springer, Cham

    Google Scholar 

  • Borsdorf A, Stötter J, Grabherr G, Bender O, Marchant C, Sánchez R (2015) Impacts and risks of global change. In: Grover VI, Borsdorf A, Breuste JH, Tiwari PC, Frangetto FW (eds) Impacts of global change on mountains: responses and adaptation. CRC Press, Boca Raton-London-New York, pp 33–76

    Google Scholar 

  • Borsdorf A, Bender O (2007) Kulturlandschaftsverlust durch Verbuschung und Verwaldung im subalpinen und hochmontanen Höhenstockwerk: Die Folgen des klimatischen und sozioökonomischen Wandels. In: Geographie Innsbruck, Innsbrucker Geographische Gesellschaft (eds) Alpine kulturlandschaft im wandel. Hugo Penz zum 65. Geburtstag. Innsbrucker Geographische Gesellschaft, Innsbruck, pp 29–50

    Google Scholar 

  • Bosworth D, Brown H (2007) After the timber wars: community-based stewardship. J Forest 105:271–273

    Google Scholar 

  • Bouahmed A, Vessella F, Schirone B, Krouchi F, Derridj A (2019) Modeling Cedrus atlantica potential distribution in North Africa across time: new putative glacial refugia and future range shifts under climate change. Reg Environ Change 19:1667–1682

    Google Scholar 

  • Bouchaou L, Tagma T, Boutaleb S, Hssaisoune M, El Morjani ZEA (2011) Climate change and its impacts on groundwater resources in Morocco: the case of the Souss-Massa basin. In: Treidel H, Martin-Bordes JL, Gurdak JJ (eds) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. CRC Press, Boca Raton, FL, pp 129–144

    Google Scholar 

  • Boy G, Witt A (2013) Invasive alien plants and their management in Africa. CABI Africa, Nairobi

    Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756

    Google Scholar 

  • Brandt JS, Haynes MA, Kuemmerle T, Waller DM, Radeloff VC (2013) Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biol Cons 158:116–127

    Google Scholar 

  • Braun MH, Malz P, Sommer C, Farías-Barahona D, Sauter T et al (2019) Constraining glacier elevation and mass changes in South America. Nat Clim Chang 9:130–136

    Google Scholar 

  • Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Lat Am Geogr 85–124

    Google Scholar 

  • Breckle SW, Rafiqpoor MD (2020) The Hindu Kush/Afghanistan. In: Noroozi J (ed) Plant biogeography and vegetation of high mountains of Central and South-West Asia. Springer, Cham, pp 43–91

    Google Scholar 

  • Breuer I (2007) Livelihood security and mobility in the High Atlas Mountains. In: Gertel J, Breuer I (eds) Pastoral Morocco. Globalizing scapes of mobility and insecurity. Reichert, Wiesbaden, pp 165–179

    Google Scholar 

  • Brooks ML, Brown CS, Chambers JC, D’Antonio CM, Keeley JE, Belnap J (2016) Exotic annual Bromus invasions: comparisons among species and ecoregions in the western United States. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the western US. Springer, Cham, pp 11–60

    Google Scholar 

  • Browman DL (1974) Pastoral nomadism in the Andes. Curr Anthropol 15:188–196

    Google Scholar 

  • Brown ME, Funk C, Pedreros D, Korecha D, Lemma M et al (2017) A climate trend analysis of Ethiopia: examining subseasonal climate impacts on crops and pasture conditions. Clim Change 142:169–182

    Google Scholar 

  • Brown LR, Du Preez J (2020) Alpine vegetation of temperate mountains of southern Africa. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 395–404

    Google Scholar 

  • Brugnara Y, Maugeri M (2019) Daily precipitation variability in the southern Alps since the late 19th century. Int J Climatol 39:3492–3504

    Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kääb A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci 10:668–673

    Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Boehm R, Schoener W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Google Scholar 

  • Brusca RC, Wiens JF, Meyer WM, Eble J, Franklin K, Overpeck JT, Moore W (2013) Dramatic response to climate change in the Southwest: Robert Whittaker’s 1963 Arizona mountain plant transect revisited. Ecol Evol 3:3307–3319

    Google Scholar 

  • Brush SSB (1998) Crop diversity in mountain areas and conservation strategy. Revue De Géographie Alpine 86:115–130

    Google Scholar 

  • Bryn A (2008) Recent forest limit changes in South-East Norway: effects of climate change or regrowth after abandoned utilisation? Norsk Geogr Tidsskr Norw J Geogr 62:251–270

    Google Scholar 

  • Bryn A, Hemsing LØ (2012) Impacts of land use on the vegetation in three rural landscapes of Norway. Int J Biodivers Sci Ecosyst Serv Manage 8:360–371

    Google Scholar 

  • Bryn A, Potthoff K (2018) Elevational treeline and forest line dynamics in Norwegian mountain areas—a review. Landscape Ecol 33:1225–1245

    Google Scholar 

  • Bräuning A, Grießinger J, Hochreuther P, Wernicke J (2016) Dendroecological perspectives on climate change on the southern Tibetan Plateau. In: Singh RB, Schickhoff U, Mal S (eds) Climate change and dynamics of glaciers and vegetation in the Himalaya. Springer, Cham, pp 347–364

    Google Scholar 

  • Bråthen KA, Ravolainen VT, Stien A, Tveraa T, Ims RA (2017) Rangifer management controls a climate-sensitive tundra state transition. Ecol Appl 27:2416–2427

    Google Scholar 

  • Bucała-Hrabia A (2018) Land use changes and their catchment-scale environmental impact in the Polish western Carpathians during transition from centrally planned to free-market economics. Geogr Pol 91:171–196

    Google Scholar 

  • Buermann W, Parida B, Jung M, MacDonald GM, Tucker CJ, Reichstein M (2014) Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys Res Lett 41:1995–2002

    Google Scholar 

  • Bulygina ON, Razuvaev VN, Korshunova NN (2009) Changes in snow cover over northern Eurasia in the last few decades. Environ Res Lett 4:045026

    Google Scholar 

  • Burga CA, Krüsi B, Egli M, Wernli M, Elsener S et al (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora 205:561–576

    Google Scholar 

  • Bush E, Lemmen DS (eds) (2019) Canada’s changing climate report. Government of Canada, Ottawa

    Google Scholar 

  • Butzer KW (1981) Rise and fall of Axum, Ethiopia: a geo-archaeological interpretation. Am Antiq 46:471–495

    Google Scholar 

  • Butzer KW, Butzer EK (1995) Transfer of the Mediterranean livestock economy to New Spain: adaptation and ecological consequences. In: Turner BL, Goméz Sal A, González Bernáldez F, Di Castri F (eds) Global land use change: a perspective from the Columbian encounter. CSIC, Madrid, pp 151–193

    Google Scholar 

  • Byer S, Jin Y (2017) Detecting drought-induced tree mortality in Sierra Nevada forests with time series of satellite data. Remote Sens 9:929

    Google Scholar 

  • Byers A (2005) Contemporary human impacts on alpine ecosystems in the Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal. Ann Assoc Am Geogr 95:112–140

    Google Scholar 

  • Byers AC (2017) Khumbu since 1950. Cultural, landscape, and climate change in the Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal. Vajra Books, Kathmandu

    Google Scholar 

  • Byers AC, Price LW, Price MF (2013) Introduction to mountains. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Physical and human dimensions. University of California Press, Berkeley-Los Angeles, pp 1–10

    Google Scholar 

  • Bätzing W (2015) Die Alpen—Geschichte und Zukunft einer europäischen Kulturlandschaft. Beck, München

    Google Scholar 

  • Bätzing W (2018) Die Alpen—Das Verschwinden einer Kulturlandschaft. wbgTHEISS, Darmstadt

    Google Scholar 

  • Bürzle B, Schickhoff U, Schwab N, Wernicke L, Müller Y et al (2018) Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecol 219:115–132

    Google Scholar 

  • CH2018 (2018) Climate scenarios for Switzerland. Technical report. National Centre for Climate Services, Zurich

    Google Scholar 

  • Cabrelli A, Beaumont L, Hughes L (2015) The impacts of climate change on Australian and New Zealand flora and fauna. In: Stow A, Maclean N, Holwell GI (eds) Austral ark: the state of wildlife in Australia and New Zealand. Cambridge University Press, Cambridge, pp 65–82

    Google Scholar 

  • Cai H, Yang X, Xu X (2015) Human-induced grassland degradation/restoration in the Central Tibetan Plateau: the effects of ecological protection and restoration projects. Ecol Eng 83:112–119

    Google Scholar 

  • Camarero JJ, García-Ruiz JM, Sangüesa-Barreda G, Galván JD, Alla AQ et al (2015) Recent and intense dynamics in a formerly static Pyrenean treeline. Arct Antarct Alp Res 47:773–783

    Google Scholar 

  • Camarero JJ, Linares JC, García-Cervigón AI, Batllori E, Martínez I, Gutiérrez E (2017) Back to the future: the responses of alpine treelines to climate warming are constrained by the current ecotone structure. Ecosystems 20:683–700

    Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648

    Google Scholar 

  • Cannone N, Pignatti S (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim Change 123:201–214

    Google Scholar 

  • Cao B, Zhang T, Peng X, Mu C, Wang Q et al (2018) Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe river basin, western China. J Geophys Res Atmos 123:7935–7949

    Google Scholar 

  • CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci 111:4916–4921

    Google Scholar 

  • Carbutt C (2020) Nature of alpine ecosystems in tropical mountains of Africa. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 292–299

    Google Scholar 

  • Cardelús CL, Woods CL, Bitew Mekonnen A, Dexter S, Scull P, Tsegay BA (2019) Human disturbance impacts the integrity of sacred church forests. Ethiopia. PloS ONE 14:e0212430

    Google Scholar 

  • Carilla J, Grau HR, Paolini L, Mariano M (2013) Lake fluctuations, plant productivity, and long-term variability in high-elevation tropical Andean ecosystems. Arct Antarct Alp Res 45:179–189

    Google Scholar 

  • Carilla J, Halloy S, Cuello S, Grau A, Malizia A, Cuesta F (2018) Vegetation trends over eleven years on mountain summits in NW Argentina. Ecol Evol 8:11554–11567

    Google Scholar 

  • Carlson AE, Kilmer Z, Ziegler LB, Stoner JS, Wiles GC et al. (2017a) Recent retreat of Columbia Glacier, Alaska: millennial context. Geology 45:547–550

    Google Scholar 

  • Carlson BZ, Corona MC, Dentant C, Bonet R, Thuiller W, Choler P (2017b) Observed long-term greening of alpine vegetation—a case study in the French Alps. Environ Res Lett 12:114006

    Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci 108:1474–1478

    Google Scholar 

  • Chakraborty A, Saha S, Sachdeva K, Joshi PK (2018) Vulnerability of forests in the Himalayan region to climate change impacts and anthropogenic disturbances: a systematic review. Reg Environ Change 18:1783–1799

    Google Scholar 

  • Chala D, Brochmann C, Psomas A, Ehrich D, Gizaw A et al (2016) Good-bye to tropical alpine plant giants under warmer climates? Loss of range and genetic diversity in Lobelia rhynchopetalum. Ecol Evol 6:8931–8941

    Google Scholar 

  • Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ et al (2013) Phenological changes in the southern hemisphere. PLoS ONE 8:e75514

    Google Scholar 

  • Chand P, Sharma MC (2015) Glacier changes in the Ravi basin, north-western Himalaya (India) during the last four decades (1971–2010/13). Global Planet Change 135:133–147

    Google Scholar 

  • Chand P, Sharma MC, Bhambri R, Sangewar CV, Juyal N (2017) Reconstructing the pattern of the Bara Shigri glacier fluctuation since the end of the Little Ice Age, Chandra valley, north-western Himalaya. Prog Phys Geogr 41:643–675

    Google Scholar 

  • Chapin FS III, Trainor SF, Cochran P, Huntington H, Markon C, McCammon M, McGuire AD, Serreze M (2014) Alaska. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate change impacts in the United States: the third national climate assessment. U.S Global Change Research Program, Washington DC, pp 514–536

    Google Scholar 

  • Charbonneau M (2009) Scattered development of settlement and grouping in Andean pastoral societies. Ann De Géog 670:637–658

    Google Scholar 

  • Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. For Ecol Manage 259:1406–1415

    Google Scholar 

  • Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948

    Google Scholar 

  • Chebli Y, Chentouf M, Ozer P, Hornick JL, Cabaraux JF (2018) Forest and silvopastoral cover changes and its drivers in northern Morocco. Appl Geogr 101:23–35

    Google Scholar 

  • Cheddadi R, Nourelbait M, Bouaissa O, Tabel J, Rhoujjati A et al (2015) A history of human impact on Moroccan mountain landscapes. Afr Archaeol Rev 32:233–248

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Google Scholar 

  • Chen X, Liang S, Cao Y (2016) Satellite observed changes in the northern hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environ Res Lett 11:084002

    Google Scholar 

  • Chen J, Ouyang Z, John R, Henebry GM, Groisman PY et al (2020) Social-ecological systems across the Asian Drylands Belt (ADB). In: Gutman G, Chen J, Henebry GM, Kappas M (eds) Landscape dynamics of drylands across Greater Central Asia: people, societies and ecosystems. Springer, Cham, pp 191–225

    Google Scholar 

  • Chen Y, Takeuchi K, Xu C, Chen Y, Xu Z (2006) Regional climate change and its effects on river runoff in the Tarim basin, China. Hydrol Process 20:2207–2216

    Google Scholar 

  • Chen AA, Wang NL, Guo ZM, Wu YW, Wu HB (2018) Glacier variations and rising temperature in the Mt. Kenya since the last glacial maximum. J Mt Sci 15:1268–1282

    Google Scholar 

  • Chen F, Yuan YJ, Wei WS, Fan ZA, Zhang T et al (2012) Climatic response of ring width and maximum latewood density of Larix sibirica in the Altay Mountains reveals recent warming trends. Ann For Sci 69:723–733

    Google Scholar 

  • Chettri N, Shrestha AB, Sharma E (2020) Climate change trends and ecosystem resilience in the Hindu Kush Himalayas. In: Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan weather and climate and their impact on the environment. Springer, Cham, pp 525–552

    Google Scholar 

  • Chevallier P, Pouyaud B, Mojaïsky M, Bolgov M, Olsson O, Bauer M, Froebrich J (2014) River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate. Hydrol Sci J 59:1491–1506

    Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570

    Google Scholar 

  • Chhetri PK, Cairns DM (2018) Low recruitment above treeline indicates treeline stability under changing climate in Dhorpatan Hunting Reserve, western Nepal. Phys Geogr 39:329–342

    Google Scholar 

  • Chhetri PK, Gaddis KD, Cairns DM (2018) Predicting the suitable habitat of treeline species in the Nepalese Himalayas under climate change. Mt Res Dev 38:153–164

    Google Scholar 

  • Chidi CL (2017) Patch analysis of cultivated land abandonment in the hills of western Nepal. In: Li A, Deng W, Zhao W (eds) Land cover change and its eco-environmental responses in Nepal. Springer, Singapore, pp 149–162

    Google Scholar 

  • Childers M (2012) Colorado powder keg: ski resorts and the environmental movement. University Press of Kansas, Lawrence

    Google Scholar 

  • Christensen JH, Kanikicharla KK, Aldrian E, An SI, Cavalcanti IFA et al. (2013) Climate phenomena and their relevance for future regional climate change. In: IPCC (ed) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge-New York, pp 1217–1308

    Google Scholar 

  • Christensen OB, Kjellström E, Zorita E (2015) Projected change—atmosphere. In: The BACC II Author Team (eds) Second assessment of climate change for the Baltic Sea basin. Springer, Cham, pp 217–233

    Google Scholar 

  • Chudley TR, Miles ES, Willis IC (2017) Glacier characteristics and retreat between 1991 and 2014 in the Ladakh Range, Jammu and Kashmir. Remote Sens Lett 8:518–527

    Google Scholar 

  • Chávez RO, Christie DA, Olea M, Anderson TG (2019) A multiscale productivity assessment of high Andean peatlands across the Chilean Altiplano using 31 years of Landsat imagery. Remote Sens 11:2955

    Google Scholar 

  • Clarke GK, Jarosch AH, Anslow FS, Radić V, Menounos B (2015) Projected deglaciation of western Canada in the twenty-first century. Nat Geosci 8:372–377

    Google Scholar 

  • Classen A, Eardley CD, Hemp A, Peters MK, Peters RS, Ssymank A, Steffan-Dewenter I (2020) Specialization of plant–pollinator interactions increases with temperature at Mt Kilimanjaro. Ecol Evol 10:2182–2195

    Google Scholar 

  • Cline SA (2013) Land use and landscape change in the Rockies: Implications for mountain agriculture. In: Mann S (ed) The future of mountain agriculture. Springer, Berlin, Heidelberg, pp 5–19

    Google Scholar 

  • Cole KL, Henderson N, Shafer DS (1997) Holocene vegetation and historic grazing impacts at Capitol Reef National Park reconstructed using packrat middens. Great Basin Nat 57:315–326

    Google Scholar 

  • Collins JM (2011) Temperature variability over Africa. J Clim 24:3649–3666

    Google Scholar 

  • Collins L, Bennett AF, Leonard SW, Penman TD (2019) Wildfire refugia in forests: severe fire weather and drought mute the influence of topography and fuel age. Glob Change Biol 25:3829–3843

    Google Scholar 

  • Conedera M, Colombaroli D, Tinner W, Krebs P, Whitlock C (2017) Insights about past forest dynamics as a tool for present and future forest management in Switzerland. For Ecol Manage 388:100–112

    Google Scholar 

  • Conlisk E, Castanha C, Germino MJ, Veblen TT, Smith JM, Kueppers LM (2017) Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. J Ecol 105:1347–1357

    Google Scholar 

  • Copland L (2011) Retreat/advance of glaciers. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Dordrecht, pp 934–939

    Google Scholar 

  • Cortés-Ramos J, Delgado-Granados H, Huggel C, Ontiveros-González G (2019) Evolution of the largest glacier in Mexico (Glaciar Norte) since the 50s: factors driving glacier retreat. Geogr Ann Ser B 101:350–373

    Google Scholar 

  • Couralet C, Sass-Klaassen U, Sahle Y, Sterck FJ, Ayele TB, Bongers FJJM (2007) Dendrochronological investigations on Juniperus procera from Ethiopian dry afromontane forests. In: Haneca K, Verheijden A, Beeckman H, Gärtner H, Helle G (eds) Proceedings of the DENDROSYMPOSIUM, 20–22 April, 2006, Tervuren, Belgium. TRACE—Tree Rings in Archaeology, Climatology and Ecology, vol. 5. Forschungszentrum Jülich, Jülich, pp 73–79

    Google Scholar 

  • Crimmins TM, Crimmins MA, Bertelsen CD (2013) Spring and summer patterns in flowering onset, duration, and constancy across a water-limited gradient. Am J Bot 100:1137–1147

    Google Scholar 

  • Crockett JL, Westerling AL (2018) Greater temperature and precipitation extremes intensify western US droughts, wildfire severity, and Sierra Nevada tree mortality. J Clim 31:341–354

    Google Scholar 

  • Cudlin P, Klopčič M, Tognetti R, Máli F, Alados CL et al (2017) Drivers of treeline shift in different European mountains. Climate Res 73:135–150

    Google Scholar 

  • Cuervo-Robayo AP, Ureta C, Gómez-Albores MA, Meneses-Mosquera AK, Téllez-Valdés O, Martínez-Meyer E (2020) One hundred years of climate change in Mexico. PLoS ONE 15:e0209808

    Google Scholar 

  • Cuesta F, Llambí LD, Huggel C, Drenkhan F, Gosling WD (2019) New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Reg Environ Change 19:1623–1642

    Google Scholar 

  • Cullen NJ, Gibson PB, Mölg T, Conway JP, Sirguey P, Kingston DG (2019) The influence of weather systems in controlling mass balance in the southern Alps of New Zealand. J Geophys Res Atmos 124:4514–4529

    Google Scholar 

  • Cullen NJ, Sirguey P, Mölg T, Kaser G, Winkler M, Fitzsimons SJ (2013) A century of ice retreat on Kilimanjaro: the mapping reloaded. Cryosphere 7:419–431

    Google Scholar 

  • Cunha S, Price LW (2013) Agricultural settlement and land use in mountains. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography: physical and human dimensions. University of California Press, Berkeley-Los Angeles, pp 301–331

    Google Scholar 

  • Curebal I, Efe R, Soykan A, Sonmez S (2015) Impacts of anthropogenic factors on land degradation during the Anthropocene in Turkey. J Environ Biol 36:51–58

    Google Scholar 

  • Czortek P, Eycott AE, Grytnes JA, Delimat A, Kapfer J, Jaroszewicz B (2018) Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts. Plant Ecol 219:261–276

    Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global Planet Change 60:289–305

    Google Scholar 

  • DFRS (Department of Forest Research and Survey) (2015) State of Nepal’s forests. Department of Forest Research and Survey, Kathmandu

    Google Scholar 

  • Dahal N, Shrestha UB, Tuitui A, Ojha HR (2019) Temporal changes in precipitation and temperature and their implications on the streamflow of Rosi River. Central Nepal. Climate 7:3

    Google Scholar 

  • Dainese M, Aikio S, Hulme PE, Bertolli A, Prosser F, Marini L (2017) Human disturbance and upward expansion of plants in a warming climate. Nat Clim Chang 7:577–580

    Google Scholar 

  • Dainese M, Kühn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16:815–831

    Google Scholar 

  • Damm A, Greuell W, Landgren O, Prettenthaler F (2017) Impacts of +2 °C global warming on winter tourism demand in Europe. Clim Serv 7:31–46

    Google Scholar 

  • Damschen EI, Harrison S, Grace JB (2010) Climate change effects on an endemic-rich edaphic flora: resurveying Robert H. Whittaker’s Siskiyou sites (Oregon, USA). Ecology 91:3609–3619

    Google Scholar 

  • Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95:352–363

    Google Scholar 

  • Danby RK, Koh S, Hik DS, Price LW (2011) Four decades of plant community change in the alpine tundra of Southwest Yukon. Canada. Ambio 40:660

    Google Scholar 

  • Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017) Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE 12:e0175814

    Google Scholar 

  • Dangwal DD (2009a) The lost mobility: pastoralism and modernity in Uttarakhand Himalaya (India). Nomadic Peoples 13:84–101

    Google Scholar 

  • Dangwal DD (2009b) Himalayan degradation. Colonial forestry and environmental change in India. Foundation Books, Delhi

    Google Scholar 

  • Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296

    Google Scholar 

  • Dashkhuu D, Kim JP, Chun JA, Lee WS (2015) Long-term trends in daily temperature extremes over Mongolia. Weather Clim Extremes 8:26–33

    Google Scholar 

  • Davis EL, Brown R, Daniels L, Kavanagh T, Gedalof ZE (2020) Regional variability in the response of alpine treelines to climate change. Clim Change. https://doi.org/10.1007/s10584-020-02743-0

    Article  Google Scholar 

  • Davis EL, Gedalof ZE (2018) Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains. Glob Change Biol 24:4489–4504

    Google Scholar 

  • Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the Central Himalayas. Quatern Int 283:72–77

    Google Scholar 

  • DeBeer CM, Wheater HS, Carey SK, Chun KP (2016) Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. Hydrol Earth Syst Sci 20:1573

    Google Scholar 

  • Dearborn KD, Danby RK (2018) Climatic drivers of tree growth at tree line in Southwest Yukon change over time and vary between landscapes. Clim Change 150:211–225

    Google Scholar 

  • Defila C, Clot B, Jeanneret F, Stöckli R (2016) Phenology in Switzerland since 1808. In: Willemse S, Furger M (eds) From weather observations to atmospheric and climate sciences in Switzerland: celebrating 100 years of the Swiss Society for Meteorology. vdf Hochschulverlag, Zurich, pp 291–306

    Google Scholar 

  • Demiroglu OC, Lundmark L, Saarinen J, Müller DK (2019) The last resort? Ski tourism and climate change in arctic Sweden. J Tourism Futures 6:91–101

    Google Scholar 

  • Denevan WM (1992) The pristine myth: the landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385

    Google Scholar 

  • Deng H, Chen Y, Wang H, Zhang S (2015) Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Global Planet Change 135:28–37

    Google Scholar 

  • Desyatkin R, Fedorov A, Desyatkin A, Konstantinov P (2015) Air temperature changes and their impact on permafrost ecosystems in eastern Siberia. Therm Sci 19:S351–S360

    Google Scholar 

  • Detsch F, Otte I, Appelhans T, Hemp A, Nauss T (2016) Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sens Environ 178:70–83

    Google Scholar 

  • Dial RJ, Berg EE, Timm K, McMahon A, Geck J (2007) Changes in the alpine forest-tundra ecotone commensurate with recent warming in Southcentral Alaska: evidence from orthophotos and field plots. J Geophys Res Biogeosci 112:G04015

    Google Scholar 

  • Dial RJ, Scott Smeltz T, Sullivan PF, Rinas CL, Timm K et al (2016) Shrubline but not treeline advance matches climate velocity in montane ecosystems of South-Central Alaska. Glob Change Biol 22:1841–1856

    Google Scholar 

  • Dietz AJ, Kuenzer C, Conrad C (2013) Snow-cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int J Remote Sens 34:3879–3902

    Google Scholar 

  • Diffenbaugh NS, Scherer M, Ashfaq M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Chang 3:379–384

    Google Scholar 

  • Dilsaver LM, Wyckoff W, Preston WL (2000) Fifteen events that have shaped California’s human landscape. Calif Geogr 40:1–76

    Google Scholar 

  • Dimeyeva LA, Sitpayeva GT, Sultanova BM, Ussen K, Islamgulova AF (2015) High-altitude flora and vegetation of Kazakhstan and climate change impacts. In: Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) Climate change impacts on high-altitude ecosystems. Springer, Cham, pp 1–48

    Google Scholar 

  • Dimri AP, Choudhary A, Kumar D (2020) Elevation dependent warming over Indian Himalayan region. In: Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan weather and cimate and their impact on the environment. Springer, Cham, pp 141–156

    Google Scholar 

  • Dimri AP, Dash SK (2012) Wintertime climatic trends in the western Himalayas. Clim Change 111:775–800

    Google Scholar 

  • Dimri AP, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Glob Planet Change 162:235–251

    Google Scholar 

  • Dinca L, Nita MD, Hofgaard A, Alados CL, Broll G et al (2017) Forests dynamics in the montane alpine boundary: a comparative study using satellite imagery and climate data. Climate Res 73:97–110

    Google Scholar 

  • Diodato N, Bellocchi G, Tartari G (2011) How do Himalayan areas respond to global warming? Int J Climatol 32:975–982

    Google Scholar 

  • Djema A, Messaoudene M (2009) The Algerian forest: current situation and prospects. In: Palahi M, Birot Y, Bravo F, Gorriz E (eds) Modelling, valuing and managing Mediterranean forest ecosystems for non-timber goods and services. European Forest Institute, Joensuu, pp 17–28

    Google Scholar 

  • Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemuth T, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming? Int J Biometeorol 50:40–47

    Google Scholar 

  • Dolanc CR, Safford HD, Dobrowski SZ, Thorne JH (2014) Twentieth century shifts in abundance and composition of vegetation types of the Sierra Nevada, CA, US. Appl Veg Sci 17:442–455

    Google Scholar 

  • Dolanc CR, Thorne JH, Safford HD (2013) Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007. Glob Ecol Biogeogr 22:264–276

    Google Scholar 

  • Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I et al (2016) Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci Rep 6:24881

    Google Scholar 

  • Donahue DL (2005) Western grazing: the capture of grass, ground, and government. Environ Law 35:721–806

    Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD, Almazroui M et al (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34:581–592

    Google Scholar 

  • Dong SK, Lassoie JP, Yan ZL, Sharma E, Shrestha KK, Pariya D (2007) Indigenous rangeland resource management in the mountainous areas of northern Nepal: a case study from the Rasuwa District. Rangeland J 29:149–160

    Google Scholar 

  • Dong C, MacDonald GM, Willis K, Gillespie TW, Okin GS, Williams AP (2019) Vegetation responses to 2012–2016 drought in northern and southern California. Geophys Res Lett 46:3810–3821

    Google Scholar 

  • Dong B, Sutton RT, Chen W, Liu X, Lu R, Sun Y (2016) Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: drivers and physical processes. Adv Atmos Sci 33:1005–01023

    Google Scholar 

  • Dong SK, Shaoliang LY, Yan ZL (2016) Maintaining the human-natural systems of pastoralism in the Himalayas of South Asia and China. In: Dong S, Kassam KAS, Tourrand JF, Boone RB (eds) Building resilience of human-natural systems of pastoralism in the developing world. Springer, Cham, pp 93–135

    Google Scholar 

  • Dorji T, Hopping KA, Meng F, Wang S, Jiang L, Klein JA (2020) Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agr Ecosyst Environ 291:106795

    Google Scholar 

  • Dorji T, Hopping KA, Wang S, Piao S, Tarchen T, Klein JA (2018) Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species. Agric For Meteorol 263:188–197

    Google Scholar 

  • Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Change Biol 19:459–472

    Google Scholar 

  • Dorjsuren B, Yan D, Wang H, Chonokhuu S, Enkhbold A et al (2018) Observed trends of climate and river discharge in Mongolia’s Selenga sub-basin of the Lake Baikal basins. Water 10:1436

    Google Scholar 

  • Du H, Liu J, Li MH, Büntgen U, Yang Y et al (2018) Warming-induced upward migration of the alpine treeline in the Changbai Mountains, Northeast China. Glob Change Biol 24:1256–1266

    Google Scholar 

  • Dubovyk O (2018) Spatiotemporal assessment of vegetation trends in the post-Soviet Central Asia. In: Egamberdieva D, Öztürk M (eds) Vegetation of central Asia and environs. Springer, Cham, pp 1–13

    Google Scholar 

  • Duethmann D, Bolch T, Farinotti D, Kriegel D, Vorogushyn S et al (2015) Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour Res 51:4727–4750

    Google Scholar 

  • Dulamsuren C, Hauck M, Leuschner HH, Leuschner C (2011) Climate response of tree-ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Ann For Sci 68:275–282

    Google Scholar 

  • Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M (2014) Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J Plant Ecol 7:24–38

    Google Scholar 

  • Dulamsuren C, Wommelsdorf T, Zhao F, Xue Y, Zhumadilov BZ, Leuschner C, Hauck M (2013) Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems 16:1536–1549

    Google Scholar 

  • Dulamsuren C, Hauck M, Khishigjargal M, Leuschner HH, Leuschner C (2010a) Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica. Oecologia 163:1091–1102

    Google Scholar 

  • Dulamsuren C, Hauck M, Leuschner C (2010b) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob Change Biol 16:3024–3035

    Google Scholar 

  • Dullinger S, Dirnböck T, Greimler J, Grabherr G (2003) A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity. J Veg Sci 14:243–252

    Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang 2:619–622

    Google Scholar 

  • Dullinger I, Gattringer A, Wessely J, Moser D, Plutzar C et al (2020) A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob Change Biol 26:2336–2352

    Google Scholar 

  • Duo C, Xie H, Wang P, Guo J, La J, Qiu Y, Zheng Z (2014) Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations. J Appl Remote Sens 8:084690

    Google Scholar 

  • Duque A, Stevenson PR, Feeley KJ (2015) Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci 112:10744–10749

    Google Scholar 

  • Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:2487–2512

    Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R et al (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12:802–808

    Google Scholar 

  • Dykes RC, Brook MS, Robertson CM, Fuller IC (2011) Twenty-first century calving retreat of Tasman Glacier, southern Alps, New Zealand. Arct Antarct Alp Res 43:1–10

    Google Scholar 

  • Dymond JR, Shepherd JD, Newsome PF, Belliss S (2017) Estimating change in areas of indigenous vegetation cover in New Zealand from the New Zealand Land Cover Database (LCDB). N Z J Ecol 41:56–64

    Google Scholar 

  • Dyrrdal AV, Saloranta T, Skaugen T, Stranden HB (2013) Changes in snow depth in Norway during the period 1961–2010. Hydrol Res 44:169–179

    Google Scholar 

  • Dörre A, Borchardt P (2012) Changing systems, changing effects—pasture utilization in the post-Soviet transition. Mt Res Dev 32:313–324

    Google Scholar 

  • Dörre A (2012) Legal arrangements and pasture-related socio-ecological challenges in Kyrgyzstan. In: Kreutzmann H (ed) Pastoral practices in High Asia. Springer, Dordrecht, pp 127–144

    Google Scholar 

  • EEA (European Environment Agency) (2009) Water resources across Europe—confronting water scarcity and drought. European Union, Luxembourg

    Google Scholar 

  • EEA (European Environment Agency) (2017) Climate change, impacts, and vulnerability in Europe 2016. EEA Report No 1/2017. European Union, Luxembourg

    Google Scholar 

  • Eckert S, Kiteme B, Njuguna E, Zaehringer JG (2017) Agricultural expansion and intensification in the foothills of Mount Kenya: a landscape perspective. Remote Sens 9:784

    Google Scholar 

  • Egan PA, Price MF (2017) Mountain ecosystem services and climate change: a global overview of potential threats and strategies for adaptation. UNESCO Publishing, Paris

    Google Scholar 

  • Egarter Vigl L, Schirpke U, Tasser E, Tappeiner U (2016) Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landscape Ecol 31:1903–1918

    Google Scholar 

  • Ehlers E, Kreutzmann H (2000) High mountain ecology and economy: potential and constraints. In: Ehlers E, Kreutzmann H (eds) High mountain pastoralism in northern Pakistan. Franz Steiner Verlag, Stuttgart, pp 9–36

    Google Scholar 

  • Eiter S, Potthoff K (2016) Landscape changes in Norwegian mountains: increased and decreased accessibility, and their driving forces. Land Use Policy 54:235–245

    Google Scholar 

  • El-Vilaly MAS, Didan K, Marsh SE, Van Leeuwen WJ, Crimmins MA, Munoz AB (2018) Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA. Front Earth Sci 12:37–51

    Google Scholar 

  • Elias SA (2020) Overview of mountains (alpine systems): life at the top. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 251–264

    Google Scholar 

  • Elizbarashvili M, Elizbarashvili E, Tatishvili M, Elizbarashvili S, Meskhia R et al (2017) Georgian climate change under global warming conditions. Ann Agrarian Sci 15:17–25

    Google Scholar 

  • Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2° C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol 19:1827–1840

    Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416

    Google Scholar 

  • Elliott GP (2011) Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20:46–57

    Google Scholar 

  • Elliott GP (2012) Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, USA. Ecology 93:1614–1625

    Google Scholar 

  • Elliott GP, Bailey SN, Cardinal SJ (2020) Hotter drought as a disturbance at upper treeline in the southern Rocky Mountains. Ann Am Assoc Geogr. https://doi.org/10.1080/24694452.2020.1805292

    Article  Google Scholar 

  • Elliott GP, Kipfmueller KF (2011) Multiscale influences of climate on upper treeline dynamics in the southern Rocky Mountains, USA: evidence of intraregional variability and bioclimatic thresholds in response to twentieth-century warming. Ann Assoc Am Geogr 101:1181–1203

    Google Scholar 

  • Elliott GP, Petruccelli CA (2018) Tree recruitment at the treeline across the Continental Divide in the northern Rocky Mountains, USA: the role of spring snow and autumn climate. Plant Ecolog Divers 11:319–333

    Google Scholar 

  • Elliott GP (2017) Treeline ecotones. In: Richardson D, Castree N, Goodchild MF, Kobayashi A, Liu W, Marston RA (eds) International encyclopedia of geography: people, the Earth, environment and technology. Wiley Blackwell, https://doi.org/10.1002/9781118786352.wbieg0539

  • Elmendorf SC, Henry GH, Hollister RD, Fosaa AM, Gould WA et al (2015) Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc Natl Acad Sci 112:448–452

    Google Scholar 

  • Elmi M, Streifeneder T, Ravazzoli E, Laner P, Petitta M et al (2018) The alps in 25 maps. Permanent Secretariat of the Alpine Convention, Innsbruck-Bolzano

    Google Scholar 

  • Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Chang 5:772–776

    Google Scholar 

  • Elsner MM, Cuo L, Voisin N, Deems JS, Hamlet AF et al (2010) Implications of 21st century climate change for the hydrology of Washington State. Clim Change 102:225–260

    Google Scholar 

  • Elumeeva TG, Onipchenko VG, Egorov AV, Khubiev AB, Tekeev DK, Soudzilovskaia NA, Cornelissen JH (2013) Long-term vegetation dynamic in the northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alp Bot 123:77–85

    Google Scholar 

  • Emanuelsson U (1987) Human influence on vegetation in the Torneträsk area during the last three centuries. Ecol Bull 38:95–111

    Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341

    Google Scholar 

  • Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M (2015) Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6:1–15

    Google Scholar 

  • Erlandson JM, Braje TJ (2015) Stemmed points, the coastal migration theory, and the peopling of the Americas. In: Frachetti MD, Spengler RN (eds) Mobility and ancient society in Asia and the Americas. Springer, Cham, pp 49–58

    Google Scholar 

  • Ermert V, Fink AH, Morse AP, Paeth H (2012) The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect 120:77–84

    Google Scholar 

  • Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD (2014) Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Change Biol 20:3256–3269

    Google Scholar 

  • Erschbamer B, Caccianiga MS (2016) Glacier forelands: lessons of plant population and community development. In: Cánovas F, Lüttge U, Matyssek R (eds) Progress in botany, vol 78. Springer, Cham, pp 259–284

    Google Scholar 

  • Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central alpine glacier foreland. J Veg Sci 19:855–862

    Google Scholar 

  • Escobar G, Beall CM (1982) Contemporary patterns of migration in the central andes. Mt Res Dev 2:63–80

    Google Scholar 

  • Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 31:L06202

    Google Scholar 

  • Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM et al (2019) A conceptual framework for range-expanding species that track human-induced environmental change. Bioscience 69:908–919

    Google Scholar 

  • Essl F (2019) First records of casual occurrences of Chinese windmill palm Trachycarpus fortunei (Hook.) H. Wendl. in Austria. BioInvasions Rec 8:471–477

    Google Scholar 

  • Evangelista A, Frate L, Carranza ML, Attorre F, Pelino G, Stanisci A (2016) Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants 8:plw004

    Google Scholar 

  • Fadrique B, Báez S, Duque Á, Malizia A, Blundo C et al (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature 564:207–212

    Google Scholar 

  • Fajardo A, McIntire EJ (2012) Reversal of multicentury tree growth improvements and loss of synchrony at mountain tree lines point to changes in key drivers. J Ecol 100:782–794

    Google Scholar 

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol 22:617–631

    Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the Southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114:D04102

    Google Scholar 

  • Fan ZX, Bräuning A, Cao KF, Zhu SD (2009) Growth-climate responses of high-elevation conifers in the Central Hengduan Mountains, southwestern China. For Ecol Manage 258:306–313

    Google Scholar 

  • Fang O, Wang Y, Shao X (2016) The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. Trees 30:281–294

    Google Scholar 

  • Farinotti D, Immerzeel WW, De Kok RJ, Quincey DJ, Dehecq A (2020) Manifestations and mechanisms of the Karakoram glacier anomaly. Nat Geosci 13:8–16

    Google Scholar 

  • Farinotti D, Longuevergne L, Moholdt G, Duethmann D, Mölg T et al (2015) Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat Geosci 8:716–722

    Google Scholar 

  • Fayad A, Gascoin S, Faour G, López-Moreno JI, Drapeau L, Le Page M, Escadafal R (2017) Snow hydrology in Mediterranean mountain regions: a review. J Hydrol 551:374–396

    Google Scholar 

  • Fedorov AN, Ivanova RN, Park H, Hiyama T, Iijima Y (2014) Recent air temperature changes in the permafrost landscapes of northeastern Eurasia. Polar Sci 8:114–128

    Google Scholar 

  • Feeley KJ, Hurtado J, Saatchi S, Silman MR, Clark DB (2013) Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob Change Biol 19:3472–3480

    Google Scholar 

  • Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG et al (2011) Upslope migration of Andean trees. J Biogeogr 38:783–791

    Google Scholar 

  • Fei S, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM (2017) Divergence of species responses to climate change. Sci Adv 3:e1603055

    Google Scholar 

  • Felde VA, Kapfer J, Grytnes JA (2012) Upward shift in elevational plant species ranges in Sikkilsdalen, Central Norway. Ecography 35:922–932

    Google Scholar 

  • Fernandez-Gimenez ME (2002) Spatial and social boundaries and the paradox of pastoral land tenure: a case study from postsocialist Mongolia. Hum Ecol 30:49–78

    Google Scholar 

  • Fernandez-Gimenez ME, Baival B, Fassnacht SR, Wilson D (eds)(2015) Building resilience of Mongolian rangelands: a trans-disciplinary research conference, June 9-10, 2015, Ulaanbaatar, Mongolia. Tsogt Print, Ulaanbaatar

    Google Scholar 

  • Fernández Calzado MR, Molero Mesa J (2013) Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. Lazaroa 34:65–75

    Google Scholar 

  • Fickert T, Grüninger F (2018) High-speed colonization of bare ground—permanent plot studies on primary succession of plants in recently deglaciated glacier forelands. Land Degrad Dev 29:2668–2680

    Google Scholar 

  • Fickert T, Grüninger F, Damm B (2017) Klebelsberg revisited: did primary succession of plants in glacier forelands a century ago differ from today? Alp Bot 127:17–29

    Google Scholar 

  • Field CB, Chiariello NR, Diffenbaugh NS (2016) Climate change impacts. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 251–264

    Google Scholar 

  • Filippa G, Cremonese E, Galvagno M, Isabellon M, Bayle A et al (2019) Climatic drivers of greening trends in the Alps. Remote Sens 11:2527

    Google Scholar 

  • Fischer A, Fickert T, Schwaizer G, Patzelt G, Groß G (2019) Vegetation dynamics in alpine glacier forelands tackled from space. Sci Rep 9:1–13

    Google Scholar 

  • Fischer M, Huss M, Barboux C, Hoelzle M (2014) The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers. Arct Antarct Alp Res 46:933–945

    Google Scholar 

  • Fischer M, Rudmann-Maurer K, Weyand A, Stöcklin J (2008) Agricultural land use and biodiversity in the Alps. Mt Res Dev 28:148–155

    Google Scholar 

  • Fleishman E, Belnap J, Cobb N, Enquist CA, Ford K et al (2013) Natural ecosystems. In: Garfin G, Jardine A, Merideth R, Black M, LeRoy S (eds) Assessment of climate change in the Southwest United States. Island Press, Washington, DC, pp 148–167

    Google Scholar 

  • Forbes BC, Kumpula T (2009) The ecological role and geography of reindeer (Rangifer tarandus) in northern Eurasia. Geogr Compass 3:1356–1380

    Google Scholar 

  • Forister ML, McCall AC, Sanders NJ, Fordyce JA, Thorne JH et al (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc Natl Acad Sci 107:2088–2092

    Google Scholar 

  • Formica A, Farrer EC, Ashton IW, Suding KN (2014) Shrub expansion over the past 62 years in Rocky Mountain alpine tundra: possible causes and consequences. Arct Antarct Alp Res 46:616–631

    Google Scholar 

  • Forrest JR, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81:469–491

    Google Scholar 

  • Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K et al (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Cons 150:129–135

    Google Scholar 

  • Forsythe N, Fowler HJ, Li XF, Blenkinsop S, Pritchard D (2017) Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat Clim Chang 7:664–670

    Google Scholar 

  • Fountain AG, Glenn B, Basagic HJ IV (2017) The geography of glaciers and perennial snowfields in the American West. Arct Antarct Alp Res 49:391–410

    Google Scholar 

  • Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the upper Indus basin. J Clim 19:4276–4293

    Google Scholar 

  • Fox DJ (1997) Mining in mountains. In: Messerli B, Ives JD (eds) Mountains of the world—a global priority. Parthenon Publishing Group, New York-London, pp 171–198

    Google Scholar 

  • Francon L, Corona C, Roussel E, Saez JL, Stoffel M (2017) Warm summers and moderate winter precipitation boost Rhododendron ferrugineum L. growth in the Taillefer massif (French Alps). Sci Total Environ 586:1020–1031

    Google Scholar 

  • Franke AK, Feilhauer H, Bräuning A, Rautio P, Braun M (2019) Remotely sensed estimation of vegetation shifts in the polar and alpine tree-line ecotone in Finnish Lapland during the last three decades. For Ecol Manage 454:117668

    Google Scholar 

  • Frans C, Istanbulluoglu E, Lettenmaier DP, Fountain AG, Riedel J (2018) Glacier recession and the response of summer streamflow in the Pacific Northwest United States, 1960–2099. Water Resour Res 54:6202–6225

    Google Scholar 

  • Fransen S, Kuschminder K (2009) Migration in Ethiopia: history, current trends and future prospects. Maastricht Graduate School of Governance, Maastricht

    Google Scholar 

  • Franzén M, Dieker P, Schrader J, Helm A (2019) Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits. Arct Antarct Alp Res 51:366–378

    Google Scholar 

  • Frate L, Carranza ML, Evangelista A, Stinca A, Schaminée JH, Stanisci A (2018) Climate and land use change impacts on Mediterranean high-mountain vegetation in the Apennines since the 1950s. Plant Ecolog Divers 11:85–96

    Google Scholar 

  • Frazier AG, Brewington L (2020) Current changes in alpine ecosystems of Pacific Islands. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 607–619

    Google Scholar 

  • Fredman P, Chekalina T (2019) Winter recreation trends in the Swedish mountains—challenges and opportunities. In: Pröbstl-Haider U, Richins H, Türk S (eds) Winter tourism: trends and challenges. CABI, Wallingford, pp 183–191

    Google Scholar 

  • Fredman P, Heberlein TA (2005) Mountain tourism in northern Europe: current patterns and trends. In: Thompson DBA, Price MF, Galbraith CA (eds) Mountains of northern Europe: conservation, management, people and nature. TSO Scotland, Edinburgh, pp 203–212

    Google Scholar 

  • Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr 27:1268–1276

    Google Scholar 

  • Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas—all uphill from here? Bot Helv 120:117–128

    Google Scholar 

  • De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G et al (2013) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci 110:18561–18565

    Google Scholar 

  • Freppaz M, Filippa G, Corti G, Cocco S, Williams MW, Zanini E (2013) Soil properties on ski-runs. In: Rixen C, Rolando A (eds) The impacts of skiing and related winter recreational activities on mountain environments. Bentham Science Publishers, Bussum, pp 45–64

    Google Scholar 

  • Frolova NL, Belyakova PA, Grigor’ev VY, Sazonov AA, Zotov LV (2017) Many-year variations of river runoff in the Selenga basin. Water Resour 44:359–371

    Google Scholar 

  • Frost GV, Bhatt US, Epstein HE, Myers-Smith I, Phoenix GK et al. (2020) Tundra greenness. In: Thoman RL, Richter-Menge J, Druckenmiller ML (eds) Arctic report card 2020. https://doi.org/10.25923/46rm-0w23

  • Fu YH, Piao S, Op De Beeck M, Cong N, Zhao H et al (2014) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263

    Google Scholar 

  • Fukui K, Fujii Y, Ageta Y, Asahi K (2007) Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Global Planet Change 55:251–256

    Google Scholar 

  • Fulé PZ, Laughlin DC (2007) Wildland fire effects on forest structure over an altitudinal gradient, Grand Canyon National Park, USA. J Appl Ecol 44:136–146

    Google Scholar 

  • Funnell D, Parish R (2001) Mountain environments and communities. Routledge, London-New York

    Google Scholar 

  • Gade DW (1992) Landscape, system, and identity in the post-conquest Andes. Ann Assoc Am Geogr 82:460–477

    Google Scholar 

  • Gade DW (1999) Nature and culture in the Andes. University of Wisconsin Press, Madison

    Google Scholar 

  • Gaira KS, Dhar U, Belwal OK (2011) Potential of herbarium records to sequence phenological pattern: a case study of Aconitum heterophyllum in the Himalaya. Biodivers Conserv 20:2201–2210

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the Central Nepal Himalaya. Climate of the Past 10:1277–1290

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Carrer M (2017) Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 41:44–56

    Google Scholar 

  • Gallien L, Altermatt F, Wiemers M, Schweiger O, Zimmermann NE (2017) Invasive plants threaten the least mobile butterflies in Switzerland. Divers Distrib 23:185–195

    Google Scholar 

  • Galván JD, Camarero JJ, Ginzler C, Büntgen U (2014) Spatial diversity of recent trends in Mediterranean tree growth. Environ Res Lett 9:084001

    Google Scholar 

  • Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y et al (2016) Differential response of alpine steppe and alpine meadow to climate warming in the Central Qinghai-Tibetan Plateau. Agric For Meteorol 223:233–240

    Google Scholar 

  • Ganyushkin D, Chistyakov K, Volkov I, Bantcev D, Kunaeva E, Terekhov A (2017) Present glaciers and their dynamics in the arid parts of the Altai Mountains. Geosciences 7:117

    Google Scholar 

  • Gao Y, Chen F, Lettenmaier DP, Xu J, Xiao L, Li X (2018) Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. NPJ Clim Atmos Sci 1:19

    Google Scholar 

  • García-Romero A, Muñoz J, Andrés N, Palacios D (2010) Relationship between climate change and vegetation distribution in the Mediterranean mountains: Manzanares Head valley, Sierra De Guadarrama (Central Spain). Clim Change 100:645–666

    Google Scholar 

  • García-Ruiz JM, Lana-Renault N (2011) Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—a review. Agr Ecosyst Environ 140:317–338

    Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105:121–139

    Google Scholar 

  • Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet Change 75:47–55

    Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286

    Google Scholar 

  • Gardner JS, Rhoades RE, Stadel C (2013) People in the mountains. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography: physical and human dimensions. University of California Press, Berkeley-Los Angeles, pp 267–300

    Google Scholar 

  • Garfin G, Franco G, Blanco H, Comrie A, Gonzalez P et al (2014) Southwest. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, Washington DC, pp 462–486

    Google Scholar 

  • Garonna I, De Jong R, De Wit AJ, Mücher CA, Schmid B, Schaepman ME (2014) Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob Change Biol 20:3457–3470

    Google Scholar 

  • Garrard R, Kohler T, Price MF, Byers AC, Sherpa AR, Maharjan GR (2016) Land use and land cover change in Sagarmatha National Park, a World Heritage Site in the Himalayas of eastern Nepal. Mt Res Dev 36:299–310

    Google Scholar 

  • Gartzia M, Pérez-Cabello F, Bueno CG, Alados CL (2016) Physiognomic and physiologic changes in mountain grasslands in response to environmental and anthropogenic factors. Appl Geogr 66:1–11

    Google Scholar 

  • Gatti RC, Callaghan T, Velichevskaya A, Dudko A, Fabbio L, Battipaglia G, Liang J (2019) Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci Rep 9:1–13

    Google Scholar 

  • Gawith D, Kingston DG, McMillan H (2012) The effects of climate change on runoff in the Lindis and Matukituki catchments, Otago, New Zealand. J Hydrol (NZ) 51:121–135

    Google Scholar 

  • Ge Q, Wang H, Rutishauser T, Dai J (2015) Phenological response to climate change in China: a meta-analysis. Glob Change Biol 21:265–274

    Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int J Climatol 39:18–30

    Google Scholar 

  • Gebru BM, Lee WK, Khamzina A, Wang SW, Cha S, Song C, Lamchin M (2020) Spatiotemporal multi-index analysis of desertification in dry afromontane forests of northern Ethiopia. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00587-3

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Google Scholar 

  • Gentle P, Thwaites R (2016) Transhumant pastoralism in the context of socioeconomic and climate change in the mountains of Nepal. Mt Res Dev 36:173–183

    Google Scholar 

  • Gerard F, Petit S, Smith G, Thomson A, Brown N et al (2010) Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog Phys Geogr 34:183–205

    Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246

    Google Scholar 

  • Ghasemi AR (2015) Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos Sci Lett 16:366–372

    Google Scholar 

  • Gifford-Gonzalez D (2000) Animal disease challenges to the emergence of pastoralism in sub-Saharan Africa. Afr Archaeol Rev 17:95–139

    Google Scholar 

  • Gifford-Gonzalez D (2017) “Animal disease challenges” fifteen years later: the hypothesis in light of new data. Quatern Int 436:283–293

    Google Scholar 

  • Gigauri K, Akhalkatsi M, Nakhutsrishvili G, Abdaladze O (2013) Monitoring of vascular plant diversity in a changing climate in the alpine zone of the Central Greater Caucasus. Turk J Bot 37:1104–1114

    Google Scholar 

  • Gilani H, Goheer MA, Ahmad H, Hussain K (2020) Under predicted climate change: distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol Ind 111:106049

    Google Scholar 

  • Giménez-Benavides L, Escudero A, García-Camacho R, García-Fernández A, Iriondo JM et al (2018) How does climate change affect regeneration of Mediterranean high-mountain plants? An integration and synthesis of current knowledge. Plant Biol 20:50–62

    Google Scholar 

  • Glade FE, Miranda MD, Meza FJ, Van Leeuwen WJ (2016) Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile. Environ Monit Assess 188:676

    Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151

    Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16:1082–1106

    Google Scholar 

  • Goswami UP, Bhargav K, Hazra B, Goyal MK (2018) Spatiotemporal and joint probability behavior of temperature extremes over the Himalayan region under changing climate. Theoret Appl Climatol 134:477–498

    Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115

    Google Scholar 

  • Graae BJ, Vandvik V, Armbruster WS, Eiserhardt WL, Svenning JC et al (2018) Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect Plant Ecol Evol Syst 30:41–50

    Google Scholar 

  • Grab S, Linde J, De Lemos H (2017) Some attributes of snow occurrence and snowmelt/sublimation rates in the Lesotho Highlands: environmental implications. Water SA 43:333–342

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4:1133–1153

    Google Scholar 

  • Grabherr G (2003) Alpine vegetation dynamics and climate change—a synthesis of long-term studies and observations. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 399–409

    Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin III FS, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Berlin, pp 167–181

    Google Scholar 

  • Gratzer G, Keeton WS (2017) Mountain forests and sustainable development: the potential for achieving the United Nations’ 2030 Agenda. Mt Res Dev 37:246–253

    Google Scholar 

  • Greenwood S, Jump AS (2014) Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct Antarct Alp Res 46:829–840

    Google Scholar 

  • Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV et al (2014) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88

    Google Scholar 

  • Grosjean M, Messerli B (1988) African mountains and highlands: potential and constraints. Mt Res Dev 8:111–122

    Google Scholar 

  • Grover VI, Borsdorf A, Breuste JH, Tiwari PC, Frangetto FW (eds) (2015) Impact of global changes on mountains. CRC Press, Boca Raton, Responses and adaptations

    Google Scholar 

  • Gruber S, Fleiner R, Guegan E, Panday P, Schmid MO et al (2017) Review article: inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11:81–99

    Google Scholar 

  • Grytnes JA, Kapfer J, Jurasinski G, Birks HH, Henriksen H et al (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Glob Ecol Biogeogr 23:876–884

    Google Scholar 

  • Grötzbach E, Stadel C (1997) Mountain peoples and cultures. In: Messerli B, Ives JD (eds) Mountains of the world—a global priority. Parthenon Publishing Group, New York-London, pp 17–38

    Google Scholar 

  • Grötzbach E (1980) Die Nutzung der Hochweidestufe als Kriterium einer kulturgeographischen Typisierung von Hochgebirgen. In: Jentsch C, Liedtke H (eds) Höhengrenzen in Hochgebirgen. Arbeiten aus dem Geographischen Institut der Universität des Saarlandes 29. Universität des Saarlandes—Geographisches Institut, Saarbrücken, pp 265–277

    Google Scholar 

  • Grüninger F (2015) Der ökologische Preis des „Winning of the West“. Geogr Rundsch 67:24–31

    Google Scholar 

  • Gunya A (2017) Land reforms in post-socialist mountain regions and their impact on land use management: a case study from the Caucasus. J Alp Res | Rev De Géog Alpine 105–1. https://doi.org/10.4000/rga.3563

  • Guo D, Wang H (2017) Simulated historical (1901–2010) changes in the permafrost extent and active layer thickness in the northern hemisphere. J Geophys Res Atmos 122:12285–12295

    Google Scholar 

  • Gurung A, Bista R, Karki R, Shrestha S, Uprety D, Oh SE (2013) Community-based forest management and its role in improving forest conditions in Nepal. Small-Scale Forest 12:377–388

    Google Scholar 

  • Gurung DR, Giriraj A, Aung KS, Shrestha BR, Kulkarni AV (2011) Snow-cover mapping and monitoring in the Hindu Kush-Himalayas. ICIMOD, Kathmandu

    Google Scholar 

  • Gómez JM, González-Megías A, Lorite J, Abdelaziz M, Perfectti F (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers Conserv 24:1843–1857

    Google Scholar 

  • Gómez-Mendoza L, Arriaga L (2007) Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conserv Biol 21:1545–1555

    Google Scholar 

  • Güsewell S, Furrer R, Gehrig R, Pietragalla B (2017) Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob Change Biol 23:5189–5202

    Google Scholar 

  • Gądek B (2014) Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Glob Planet Change 121:1–8

    Google Scholar 

  • De Haas H (2006) Migration, remittances and regional development in southern Morocco. Geoforum 37:565–580

    Google Scholar 

  • De Haas H (2009) International migration and regional development in Morocco: a review. J Ethn Migr Stud 35:1571–1593

    Google Scholar 

  • Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M et al (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci 111:3251–3256

    Google Scholar 

  • Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417

    Google Scholar 

  • Hagedorn F, Shiyatov SG, Mazepa VS, Devi NM, Grigor’ev AA et al (2014) Treeline advances along the Urals mountain range—driven by improved winter conditions? Glob Change Biol 20:3530–3543

    Google Scholar 

  • Haider S, Kueffer C, Bruelheide H, Seipel T, Alexander JM et al (2018) Mountain roads and non-native species modify elevational patterns of plant diversity. Glob Ecol Biogeogr 27:667–678

    Google Scholar 

  • Hailemariam SN, Soromessa T, Teketay D (2016) Land use and land cover change in the Bale Mountain eco-region of Ethiopia during 1985 to 2015. Land 5:41

    Google Scholar 

  • Hall J, Burgess ND, Lovett J, Mbilinyi B, Gereau RE (2009) Conservation implications of deforestation across an elevational gradient in the eastern Arc Mountains, Tanzania. Biol Cons 142:2510–2521

    Google Scholar 

  • Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186:890–899

    Google Scholar 

  • Hallman C, Arnott H (2015) Morphological and physiological phenology of Pinus longaeva in the White Mountains of California. Tree-Ring Res 71:1–12

    Google Scholar 

  • Halloy SR, Mark AF (2003) Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arct Antarct Alp Res 35:248–254

    Google Scholar 

  • Hamid M, Khuroo AA, Malik AH, Ahmad R, Singh CP, Dolezal J, Haq SM (2020) Early evidence of shifts in alpine summit vegetation: a case study from Kashmir Himalaya. Front Plant Sci 11:421

    Google Scholar 

  • Hamilton AC (1982) Environmental history of East Africa: a study of the Quaternary. Academic Press, London

    Google Scholar 

  • Hamilton LS (2015) When the sacred encounters economic development in mountains. George Wright Forum 32:132–140

    Google Scholar 

  • Hammi S, Simonneaux V, Cordier JB, Genin D, Alifriqui M, Montes N, Auclair L (2010) Can traditional forest management buffer forest depletion? Dynamics of Moroccan High Atlas mountain forests using remote sensing and vegetation analysis. For Ecol Manage 260:1861–1872

    Google Scholar 

  • Hansen W, Magiera A, Theissen T, Waldhardt R, Otte A (2018) Analysing Betula litwinowii encroachment and reforestation in the Kazbegi region, Greater Caucasus, Georgia. J Veg Sci 29:110–123

    Google Scholar 

  • Hansen AJ, Piekielek N, Davis C, Haas J, Theobald DM (2014) Exposure of US national parks to land use and climate change 1900–2100. Ecol Appl 24:484–502

    Google Scholar 

  • Hanzer F, Förster K, Nemec J, Strasser U (2018) Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. Hydrol Earth Syst Sci 22:1593–1614

    Google Scholar 

  • Hardy KA, Thevs N, Aliev K, Welp M (2018) Afforestation and reforestation of walnut forests in southern Kyrgyzstan: an economic perspective. Mt Res Dev 38:332–341

    Google Scholar 

  • Harkoma A, Forbes BC (2020) Traditional reindeer rangeland management and a (human) rights-based approach to food sovereignty. In: Hossain K, Nilsson LM, Herrmann TM (eds) Food security in the High North: contemporary challenges across the circumpolar region. Routledge, Abingdon-New York, pp 34–55

    Google Scholar 

  • Harris C (1997) The resettlement of British Columbia. University of British Columbia Press, Vancouver

    Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    Google Scholar 

  • Harrison S, Kargel JS, Huggel C, Reynolds J, Shugar DH et al (2018) Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12:1195–1209

    Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596

    Google Scholar 

  • Harsch MA, Buxton R, Duncan RP, Hulme PE, Wardle P, Wilmshurst J (2012) Causes of tree line stability: stem growth, recruitment and mortality rates over 15 years at New Zealand Nothofagus tree lines. J Biogeogr 39:2061–2071

    Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Google Scholar 

  • Harvey HT, Shellhammer HS, Stecker RE (1980) Giant Sequoia ecology: fire and reproduction. US Department of the Interior, National Park Service, Washington, DC

    Google Scholar 

  • Hasson S, Böhner J, Lucarini V (2017) Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus basin. Earth Syst Dyn 8:337–355

    Google Scholar 

  • Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2016) Recent climate change over High Asia. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 29–48

    Google Scholar 

  • Hastenrath S (2005) The glaciers of Mount Kenya 1899–2004 (Veränderungen der Gletscher am Mount Kenya 1899–2004). Erdkunde 59:120–125

    Google Scholar 

  • He M, Yang B, Bräuning A (2013) Tree growth-climate relationships of Juniperus tibetica along an altitudinal gradient on the southern Tibetan Plateau. Trees 27:429–439

    Google Scholar 

  • Hedenås H, Christensen P, Svensson J (2016) Changes in vegetation cover and composition in the Swedish mountain region. Environ Monit Assess 188:452

    Google Scholar 

  • Hemp A (2008) Introduced plants on Kilimanjaro: tourism and its impact. Plant Ecol 197:17–29

    Google Scholar 

  • Hemp A (2009) Climate change and its impact on the forests of Kilimanjaro. Afr J Ecol 47:3–10

    Google Scholar 

  • Hemp A, Hemp C (2018) Broken bridges: the isolation of Kilimanjaro’s ecosystem. Glob Change Biol 24:3499–3507

    Google Scholar 

  • Hemp A (2005a) Climate change‐driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob Change Biol 11:1013–1023

    Google Scholar 

  • Hemp A (2005b) The banana forests of Kilimanjaro: biodiversity and conservation of the Chagga homegardens. Biodivers Conserv 15:1193–1217

    Google Scholar 

  • Hemp A (2006a) The impact of fire on diversity, structure, and composition of the vegetation on Mt. Kilimanjaro. In: Spehn EM, Liberman M, Körner C (eds) Land use change and mountain biodiversity. Taylor & Francis, Boca Raton-London-New York, pp 51–69

    Google Scholar 

  • Hemp A (2006b) Vegetation of Kilimanjaro: hidden endemics and missing bamboo. Afr J Ecol 44:305–328

    Google Scholar 

  • Hendrikx J, Hreinsson EÖ, Clark MP, Mullan AB (2012) The potential impact of climate change on seasonal snow in New Zealand: part I—an analysis using 12 GCMs. Theoret Appl Climatol 110:607–618

    Google Scholar 

  • Hennessy KJ, Whetton PH, Walsh K, Smith IN, Bathols JM, Hutchinson M, Sharples J (2008) Climate change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking. Climate Res 35:255–270

    Google Scholar 

  • Herrmann SM, Didan K, Barreto-Munoz A, Crimmins MA (2016) Divergent responses of vegetation cover in southwestern US ecosystems to dry and wet years at different elevations. Environ Res Lett 11:124005

    Google Scholar 

  • Hess CG (1990) Moving up-moving down”: agro-pastoral land-use patterns in the Ecuadorian Paramos. Mt Res Dev 10:333–342

    Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25:332–340

    Google Scholar 

  • Hewitt K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J Glaciol 53:181–188

    Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X et al. (2014) Asia. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1327–1370

    Google Scholar 

  • Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Change Biol 20:418–428

    Google Scholar 

  • Hjelle KL, Hufthammer AK, Bergsvik KA (2006) Hesitant hunters: a review of the introduction of agriculture in western Norway. Environ Archaeol 11:147–170

    Google Scholar 

  • Hock R, Rasul G, Adler C, Cáceres B, Gruber S et al. (2019) High mountain areas. In: IPCC (ed) Special report on the ocean and cryopshere in a changing climate. IPCC, Geneva, pp 131–202

    Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S et al. (2018) Impacts of 1.5 °C global warming on natural and human systems. In: IPCC (ed) Global warming of 1.5 °C. An IPCC special report. IPCC, Geneva, pp 175–311

    Google Scholar 

  • Hoekstra JM, Molnar JL, Jennings M, Revenga C, Spalding MD et al (2010) The atlas of global conservation: changes, challenges, and opportunities to make a difference. University of California Press, Berkeley

    Google Scholar 

  • Hoelzle M, Barandun M, Bolch T, Fiddes J, Gafurov A et al (2019) The status and role of the alpine cryosphere in Central Asia. In: Xenarios S, Schmidt-Vogt D, Qadir M, Janusz-Pawletta B, Abdullaev I (eds) The Aral Sea basin. Water for sustainable development in Central Asia, Routledge, Abingdon-New York, pp 100–121

    Google Scholar 

  • Hoerling MP, Dettinger M, Wolter K, Lukas J, Eischeid J et al (2013) Present weather and climate: evolving conditions. In: Garfin G, Jardine A, Merideth R, Black M, LeRoy S (eds) Assessment of climate change in the Southwest United States. Island Press, Washington, DC, pp 74–100

    Google Scholar 

  • Hofgaard A (1997) Inter-relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Glob Ecol Biogeogr Lett 6:419–429

    Google Scholar 

  • Hofgaard A, Dalen L, Hytteborn H (2009) Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20:1133–1144

    Google Scholar 

  • Hofgaard A, Ols C, Drobyshev I, Kirchhefer AJ, Sandberg S, Söderström L (2019) Non-stationary response of tree growth to climate trends along the arctic margin. Ecosystems 22:434–451

    Google Scholar 

  • Hofstede RG, Groenendijk JP, Coppus R, Fehse JC, Sevink J (2002) Impact of pine plantations on soils and vegetation in the Ecuadorian High Andes. Mt Res Dev 22:159–167

    Google Scholar 

  • Hofstede RGM, Llambi LD (2020) Plant diversity in páramo—neotropical high mountain humid grasslands. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 362–372

    Google Scholar 

  • Hogg EH, Michaelian M, Hook TI, Undershultz ME (2017) Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Glob Change Biol 23:5297–5308

    Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance - driving processes and adverse factors. Landscape Online 1:1–21

    Google Scholar 

  • Holtmeier KF, Broll G (2010) Altitudinal and polar treelines in the northern hemisphere—causes and response to climate change. Polarforschung 79:139–153

    Google Scholar 

  • Holtmeier FK, Broll G (2011) Response of Scots Pine (Pinus sylvestris) to warming climate at its altitudinal limit in northernmost subarctic Finland. Arctic 64:269–280

    Google Scholar 

  • Holtmeier FK, Broll G (2012) Landform influences on treeline patchiness and dynamics in a changing climate. Phys Geogr 33:403–437

    Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines. Ecology, patchiness, and dynamics. Advances in Global Change Research 36. Springer, Dordrecht

    Google Scholar 

  • Holtmeier FK, Broll G (2017b) Feedback effects of clonal groups and tree clusters on site conditions at the treeline: implications for treeline dynamics. Clim Res 73:85–96

    Google Scholar 

  • Holtmeier FK, Broll G (2017a) Treelines—approaches at different scales. Sustainability 9:808

    Google Scholar 

  • Holzer N, Golletz T, Buchroithner M, Bolch T (2016) Glacier variations in the Trans Alai massif and the Lake Karakul catchment (northeastern Pamir) measured from space. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 139–153

    Google Scholar 

  • Holzinger B, Hülber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196

    Google Scholar 

  • Hoorn C, Perrigo A, Antonelli A (2018) Mountains, climate and biodiversity: an introduction. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate and biodiversity. Wiley-Blackwell, Chichester, pp 1–13

    Google Scholar 

  • Hope G (2014) The sensitivity of the high mountain ecosystems of New Guinea to climatic change and anthropogenic impact. Arct Antarct Alp Res 46:777–786

    Google Scholar 

  • Hope G (2020) Current changes in alpine ecosystems of New Guinea. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 599–606

    Google Scholar 

  • Hoppe F, Schickhoff U, Oldeland J (2018) Plant species diversity of pastures in the Naryn Oblast (Kyrgyzstan). Die Erde 149:214–226

    Google Scholar 

  • Hoppe F, Zhusui Kyzy T, Usupbaev A, Schickhoff U (2016a) Rangeland degradation assessment in Kyrgyzstan: vegetation and soils as indicators of grazing pressure in Naryn Oblast. J Mt Sci 13:1567–1583

    Google Scholar 

  • Hoppe F, Zhusui Kyzy T, Usupbaev A, Schickhoff U (2016b) Contrasting grazing impact on seasonal pastures reflected by plant functional traits: search for patterns in Kyrgyz rangelands. Geo-Öko 37:165–200

    Google Scholar 

  • Hoy A, Katel O (2019) Status of climate change and implications to ecology and community livelihoods in the Bhutan Himalaya. In: Saikia A, Thapa P (eds) Environmental change in the Himalayan Region. Springer, Cham, pp 23–45

    Google Scholar 

  • Hoy A, Katel O, Thapa P, Dendup N, Matschullat J (2016) Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: an implementation strategy. Reg Environ Change 16:1401–1415

    Google Scholar 

  • Hsu HH, Chen CT (2002) Observed and projected climate change in Taiwan. Meteorol Atmos Phys 79:87–104

    Google Scholar 

  • Hu Z, Li Q, Chen X, Teng Z, Chen C, Yin G, Zhang Y (2016) Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia. Theoret Appl Climatol 126:519–531

    Google Scholar 

  • Hua XB, Yan JZ, Liu X, Wu YY, Liu LS, Zhang YL (2013) Factors influencing the grazing management styles of settled herders: a case study of Nagqu County, Tibetan Plateau, China. J Mt Sci 10:1074–1084

    Google Scholar 

  • Huang R, Zhu H, Liu X, Liang E, Grießinger J et al (2017) Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau? Glob Planet Change 148:217–226

    Google Scholar 

  • Huber UM, Bugmann HKM, Reasoner MA (eds) (2005) Global change and mountain regions. An overview of current knowledge, Springer, Dordrecht

    Google Scholar 

  • Hugo G, Bardsley DK (2014) Migration and environmental change in Asia. In: Piguet E, Laczko F (eds) People on the move in a changing climate. Springer, Dordrecht, pp 21–48

    Google Scholar 

  • Humphries HC (2020) Alpine ecosystems in temperate mountains of North America. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 311–322

    Google Scholar 

  • Huntsinger L, Forero LC, Sulak A (2010) Transhumance and pastoralist resilience in the western United States. Pastoralism 1:1–15

    Google Scholar 

  • Hurni H, Bagoora FDK, Laker MC, Mössmer M, Ofwono-Orecho JKW et al (1992) African mountain and highland environments: suitability and susceptibility. In: Stone PB (ed) The state of the world’s mountains. Zed Books, London-New Jersey, pp 11–44

    Google Scholar 

  • Huss M (2012) Extrapolating glacier mass balance to the mountain range scale: the European Alps 1900–2100. Cryosphere 6:713–727

    Google Scholar 

  • Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS et al (2017) Toward mountains without permanent snow and ice. Earth’s Future 5:418–435

    Google Scholar 

  • Huss M, Hock R (2015) A new model for global glacier change and sea-level rise. Front Earth Sci 3:54

    Google Scholar 

  • Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Chang 8:135–140

    Google Scholar 

  • IPCC (ed) (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Cambridge Univ Press, Cambridge-New York

    Google Scholar 

  • IPCC (ed) (2018) Global warming of 1.5 °C. An IPCC special report. IPCC, Geneva

    Google Scholar 

  • Imanberdieva N, Imankul B, Severoğlu Z, Altai V, Öztürk M (2018) Potential impacts of climate change on plant diversity of Sary-Chelek Biosphere Reserve in Kyrgyzstan. In: Egamberdieva D, Öztürk M (eds) Vegetation of central Asia and environs. Springer, Cham, pp 349–364

    Google Scholar 

  • Immerzeel WW, Lutz AF, Andrad M, Bah A, Biemans H et al (2020) Importance and vulnerability of the world’s water towers. Nature 577:364–369

    Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6:742–745

    Google Scholar 

  • Ims RA, Ehrich E, Forbes BC, Huntley B, Walker DA et al. (2013) Terrestrial ecosystems. In: CAFF (Conservation of Arctic Flora and Fauna) (ed) Arctic biodiversity assessment: status and trends in arctic biodiversity. CAFF, Akureyri, pp 384–440

    Google Scholar 

  • Inostroza L, Zasada I, König HJ (2016) Last of the wild revisited: assessing spatial patterns of human impact on landscapes in southern Patagonia, Chile. Reg Environ Change 16:2071–2085

    Google Scholar 

  • Inouye DW, Wielgolaski FE (2013) Phenology at high altitudes. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 249–272

    Google Scholar 

  • Intigrinova T (2010) Social inequality and risk mitigation in the era of private land: Siberian pastoralists and land use change. Pastoralism – Res Policy Pract 1:178–197

    Google Scholar 

  • Isaksen K, Ødegård RS, Etzelmüller B, Hilbich C, Hauck C et al (2011) Degrading mountain permafrost in southern Norway: spatial and temporal variability of mean ground temperatures, 1999–2009. Permafrost Periglac Process 22:361–377

    Google Scholar 

  • Istomin KV, Habeck JO (2016) Permafrost and indigenous land use in the northern Urals: Komi and Nenets reindeer husbandry. Polar Sci 10:278–287

    Google Scholar 

  • Ives JD (2004) Himalayan perceptions: environmental change and the well-being of mountain peoples. Routledge, London-New York

    Google Scholar 

  • Ives JD (2013) Sustainable mountain development. Getting the facts right, HimAAS, Lalitpur

    Google Scholar 

  • Ives JD, Messerli B (1989) The Himalayan dilemma: reconciling development and conservation. Routledge, London-New York

    Google Scholar 

  • Ives JD, Messerli B, Spiess E (1997) Mountains of the world—a global priority. In: Messerli B, Ives JD (eds) Mountains of the world—a global priority. Parthenon Publishing Group, New York-London, pp 1–15

    Google Scholar 

  • Ives JD, Ives PAH, Allan NJR, Imkamp C, Watanabe T et al (1992a) Mountains north and south. In: Stone PB (ed) The state of the world’s mountains. Zed Books, London-New Jersey, pp 127–184

    Google Scholar 

  • Ives JD, Ives PAH, Allan NJR, Imkamp C, Watanabe T et al (1992b) The Andes: geoecology of the Andes. In: Stone PB (ed) The state of the world’s mountains. Zed Books, London-New Jersey, pp 185–256

    Google Scholar 

  • Izquierdo AE, Grau HR, Navarro CJ, Casagranda E, Castilla MC, Grau A (2018) Highlands in transition: urbanization, pastoralism, mining, tourism, and wildlife in the Argentinian Puna. Mt Res Dev 38:390–400

    Google Scholar 

  • Jacka JK (2018) The anthropology of mining: the social and environmental impacts of resource extraction in the mineral age. Annu Rev Anthropol 47:61–77

    Google Scholar 

  • Jacob M, Frankl A, Hurni H, Lanckriet S, De Ridder M et al (2017) Land cover dynamics in the Simien Mountains (Ethiopia), half a century after establishment of the national park. Reg Environ Change 17:777–787

    Google Scholar 

  • Jacob M, Frankl A, Beeckman H, Mesfin G, Hendrickx M, Guyassa E, Nyssen J (2015b) North Ethiopian afro-alpine tree line dynamics and forest-cover change since the early 20th century. Land Degrad Dev 26:654–664

    Google Scholar 

  • Jacob M, Annys S, Frankl A, De Ridder M, Beeckman H, Guyassa E, Nyssen J (2015a) Tree line dynamics in the tropical African highlands—identifying drivers and dynamics. J Veg Sci 26:9–20

    Google Scholar 

  • Jacob M, De Ridder M, Vandenabeele M, Asfaha T, Nyssen J, Beeckman H (2020) The response of Erica arborea L. tree growth to climate variability at the afro-alpine tropical highlands of North Ethiopia. Forests 11:310

    Google Scholar 

  • Jacobsen JP, Schickhoff U (1995) Untersuchungen zur Besiedlung und gegenwärtigen Waldnutzung im Hindukush/Karakorum. Erdkunde 49:49–59

    Google Scholar 

  • Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in Northeast India. Int J Climatol 33:968–978

    Google Scholar 

  • Janzen J (2005) Mobile livestock-keeping in Mongolia: present problems, spatial organization, interactions between mobile and sedentary population groups and perspectives for pastoral development. Senri Ethnological Stud 69:69–97

    Google Scholar 

  • Jentsch A, Beierkuhnlein C (2003) Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns. Erdkunde 57:216–231

    Google Scholar 

  • Ji P, Yuan X (2020) Underestimation of the warming trend over the Tibetan Plateau during 1998–2013 by global land data assimilation systems and atmospheric reanalyses. J Meteorol Res 34:88–100

    Google Scholar 

  • Jiang L, Bao A, Guo H, Ndayisaba F (2017) Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci Total Environ 599:967–980

    Google Scholar 

  • Jiang R, Xie J, He H, Kuo CC, Zhu J, Yang M (2016) Spatiotemporal variability and predictability of normalized difference vegetation index (NDVI) in Alberta, Canada. Int J Biometeorol 60:1389–1403

    Google Scholar 

  • Jiménez-Alfaro B, Gavilán RG, Escudero A, Iriondo JM, Fernández-González F (2014) Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. J Veg Sci 25:1394–1404

    Google Scholar 

  • Jochner M, Bugmann H, Nötzli M, Bigler C (2017) Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps. Ecol Evol 7:7937–7953

    Google Scholar 

  • Jochner M, Bugmann H, Nötzli M, Bigler C (2018) Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees 32:645–660

    Google Scholar 

  • Jolly D, Taylor D, Marchant R, Hamilton A, Bonnefille R, Buchet G, Riollet G (1997) Vegetation dynamics in Central Africa since 18,000 yr BP: pollen records from the interlacustrine highlands of Burundi, Rwanda and western Uganda. J Biogeogr 24:492–512

    Google Scholar 

  • Joshi PK, Rawat A, Narula S, Sinha V (2012) Assessing impact of climate change on forest cover type shifts in western Himalayan eco-region. J For Res 23:75–80

    Google Scholar 

  • Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228:6426–6439

    Google Scholar 

  • Ju J, Masek JG (2016) The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens Environ 176:1–16

    Google Scholar 

  • Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103:43–55

    Google Scholar 

  • Jump AS, Huang TJ, Chou CH (2012) Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35:204–210

    Google Scholar 

  • Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18:711–718

    Google Scholar 

  • Jury MR, Funk C (2013) Climatic trends over Ethiopia: regional signals and drivers. Int J Climatol 33:1924–1935

    Google Scholar 

  • Jylhä K, Tuomenvirta H, Ruosteenoja K, Niemi-Hugaerts H, Keisu K, Karhu JA (2010) Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim Soc 2:148–167

    Google Scholar 

  • Kaczka RJ, Czajka B, Łajczak A (2015) The tree-ring growth responses to climate in the timberline ecotone of Babia Góra Mountain. Geogr Pol 88:163–176

    Google Scholar 

  • Kalisa W, Igbawua T, Henchiri M, Ali S, Zhang S, Bai Y, Zhang J (2019) Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci Rep 9:1–20

    Google Scholar 

  • Kanade R, John R (2018) Topographical influence on recent deforestation and degradation in the Sikkim Himalaya in India: implications for conservation of East Himalayan broadleaf forest. Appl Geogr 92:85–93

    Google Scholar 

  • Kapnick SB, Delworth TL (2013) Controls of global snow under a changed climate. J Clim 26:5537–5562

    Google Scholar 

  • Kapos V, Rhind J, Edwards M, Price MF, Ravilious C (2000) Developing a map of the world’s mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state of knowledge report for 2000. CABI Publications, Wallingford, pp 4–9

    Google Scholar 

  • Kappas M, Degener J, Klinge M, Vitkovskaya I, Batyrbayeva M (2020) A conceptual framework for ecosystem stewardship based on landscape dynamics: case studies from Kazakhstan and Mongolia. In: Gutman G, Chen J, Henebry GM, Kappas M (eds) Landscape dynamics of drylands across Greater Central Asia: people, societies and ecosystems. Springer, Cham, pp 143–189

    Google Scholar 

  • Karki R, Hasson S, Gerlitz L, Talchabhadel R, Schickhoff U, Scholten T, Böhner J (2019) Rising mean and extreme near-surface air temperature across Nepal. Int J Climatol 40:2445–2463

    Google Scholar 

  • Karki R, Schickhoff U, Scholten T, Böhner J (2017) Rising precipitation extremes across Nepal. Climate 5:4

    Google Scholar 

  • Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, Cambridge

    Google Scholar 

  • Kattel DB, Yao T (2013) Recent temperature trends at mountain stations on the southern slope of the Central Himalayas. J Earth Syst Sci 122:215–227

    Google Scholar 

  • Kazakis G, Ghosn D, Vogiatzakis IN, Papanastasis VP (2007) Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers Conserv 16:1603–1615

    Google Scholar 

  • Keane RE, Mahalovich MF, Bollenbacher BL, Manning ME, Loehman RA et al (2018) Effects of climate change on forest vegetation in the northern Rockies. In: Halofsky JE, Peterson DL (eds) Climate change and Rocky Mountain ecosystems. Springer, Cham, pp 59–95

    Google Scholar 

  • Kebrom T, Hedlund L (2000) Land cover changes between 1958 and 1986 in Kalu District, southern Wello, Ethiopia. Mt Res Dev 20:42–51

    Google Scholar 

  • Keenan TF, Riley WJ (2018) Greening of the land surface in the world’s cold regions consistent with recent warming. Nat Clim Chang 8:825–828

    Google Scholar 

  • Keller F, Körner C (2003) The role of photoperiodism in alpine plant development. Arct Antarct Alp Res 35:361–368

    Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci 105:11823–11826

    Google Scholar 

  • Kharal DK, Thapa UK, George SS, Meilby H, Rayamajhi S, Bhuju DR (2017) Tree-climate relations along an elevational transect in Manang Valley, Central Nepal. Dendrochronologia 41:57–64

    Google Scholar 

  • Kharlamova N, Sukhova M, Chlachula J (2019) Present climate developments in southern Siberia (1963–2017 years). IOP Conf Ser Earth Environ Sci 400:012008

    Google Scholar 

  • Kharuk VI, Im ST, Dvinskaya ML, Ranson KJ (2010) Climate-induced mountain tree-line evolution in southern Siberia. Scand J For Res 25:446–454

    Google Scholar 

  • Khattak MS, Babel MS, Sharif M (2011) Hydro-meteorological trends in the upper Indus river basin in Pakistan. Clim Res 46:103–119

    Google Scholar 

  • Khromova T, Nosenko G, Kutuzov S, Muraviev A, Chernova L (2014) Glacier area changes in northern Eurasia. Environ Res Lett 9:015003

    Google Scholar 

  • Khromova T, Nosenko G, Nikitin S, Muraviev A, Popova V et al (2019) Changes in the mountain glaciers of continental Russia during the twentieth to twenty-first centuries. Reg Environ Change 19:1229–1247

    Google Scholar 

  • Kidane Y, Stahlmann R, Beierkuhnlein C (2012) Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ Monit Assess 184:7473–7489

    Google Scholar 

  • Kidane YO, Steinbauer MJ, Beierkuhnlein C (2019) Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol Conserv 19:e00670

    Google Scholar 

  • Kienholz C, Herreid S, Rich JL, Arendt AA, Hock R, Burgess EW (2015) Derivation and analysis of a complete modern-date glacier inventory for Alaska and Northwest Canada. J Glaciol 61:403–420

    Google Scholar 

  • Kilungu H, Leemans R, Munishi PK, Nicholls S, Amelung B (2019) Forty years of climate and land-cover change and its effects on tourism resources in Kilimanjaro National Park. Tourism Plann Dev 16:235–253

    Google Scholar 

  • Kinnard C, Ginot P, Surazakov A, Macdonell S, Nicholson L et al (2020) Mass balance and climate history of a high-altitude glacier, Desert Andes of Chile. Front Earth Sci 8:40

    Google Scholar 

  • Kintz DB, Young KR, Crews-Meyer KA (2006) Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environ Manage 38:238–252

    Google Scholar 

  • Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov EA et al (2012) 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 41:56–67

    Google Scholar 

  • Kiteme BP, Liniger H, Notter B, Wiesmann U, Kohler T (2008) Dimensions of global change in African mountains: the example of Mount Kenya. IHDP Update 2(2008):18–22

    Google Scholar 

  • Kittel TG, Thornton PE, Royle JA, Chase TN (2002) Climates of the Rocky Mountains: historical and future patterns. In: Baron J (ed) Rocky Mountain futures: an ecological perspective. Island Press, Washington, DC, pp 59–82

    Google Scholar 

  • Kivinen S, Rasmus S (2015) Observed cold season changes in a Fennoscandian fell area over the past three decades. Ambio 44:214–225

    Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13:1–6

    Google Scholar 

  • Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M (2016) Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Change 139:637–649

    Google Scholar 

  • Knapp G (2007) The legacy of European colonialism. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 279–288

    Google Scholar 

  • Knorn JAN, Kuemmerle T, Radeloff VC, Keeton WS, Gancz V et al (2013) Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ Conserv 40:182–193

    Google Scholar 

  • Kobiv Y (2018) Trends in population size of rare plant species in the alpine habitats of the Ukrainian Carpathians under climate change. Diversity 10:62

    Google Scholar 

  • Kohler T, Balsiger J, Rudaz G, Debarbieux B, Pratt DJ, Maselli D (eds) (2015) Green economy and institutions for sustainable mountain development: from Rio 1992 to Rio 2012 and beyond. Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC), University of Geneva and Geographica Bernensia, Bern

    Google Scholar 

  • Koide D, Yoshida K, Daehler CC, Mueller-Dombois D (2017) An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J Veg Sci 28:939–950

    Google Scholar 

  • Kopp CW, Cleland EE (2014) Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western North America mountain range. J Veg Sci 25:135–146

    Google Scholar 

  • Kouba Y, Gartzia M, El Aich A, Alados CL (2018) Deserts do not advance, they are created: land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. J Arid Environ 158:1–8

    Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D et al. (2014) Europe. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1267–1326

    Google Scholar 

  • Kozak J (2010) Forest cover changes and their drivers in the Polish Carpathian Mountains since 1800. In: Nagendra H, Southworth J (eds) Reforesting landscapes. Linking pattern and process. Springer, Berlin, pp 253–273

    Google Scholar 

  • Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW (2017) Impact of a global temperature rise of 1.5° C on Asia’s glaciers. Nature 549:257–260

    Google Scholar 

  • Krause L, Mal S, Karki R, Schickhoff U (2019) Recession of Trakarding glacier and expansion of Tsho Rolpa lake in Nepal Himalaya based on satellite data. Himalayan Geol 40:103–114

    Google Scholar 

  • Kreutzmann H (1991) The Karakoram Highway: the impact of road construction on mountain societies. Mod Asian Stud 25:711–736

    Google Scholar 

  • Kreutzmann H (2011) Pastoralism in Central Asian mountain regions. In: Kreutzmann H, Abdulalishoev K, Lu Z, Richter J (eds) Pastoralism and rangeland management in mountain areas in the context of climate and global change. GIZ/BMZ, Bonn, pp 38–63

    Google Scholar 

  • Kreutzmann H (2012) Pastoral practices in transition: animal husbandry in high Asian contexts. In: Kreutzmann H (ed) Pastoral practices in High Asia. Springer, Dordrecht, pp 1–29

    Google Scholar 

  • Kreutzmann H (2013) The tragedy of responsibility in High Asia: Modernizing traditional pastoral practices and preserving modernist worldviews. Pastoralism: Research. Policy Pract 3:1–11

    Google Scholar 

  • Kreyling J, Wana D, Beierkuhnlein C (2010) Potential consequences of climate warming for tropical plant species in high mountains of southern Ethiopia. Divers Distrib 16:593–605

    Google Scholar 

  • Kricsfalusy VV (2013) Mountain grasslands of high conservation value in the eastern Carpathians: syntaxonomy, biodiversity, protection and management. Thaiszia 23:67–112

    Google Scholar 

  • Krishnamurthy V, Ajayamohan RS (2010) Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J Clim 23:4285–4305

    Google Scholar 

  • Krishnan R, Sanjay J (2017) Climate change over India: an interim report. Centre for Climate Change Research, Ministry of Earth Sciences, Govt. of India, Pashan

    Google Scholar 

  • Krishnan R, Sabin TP, Madhura RK, Vellore RK, Mujumdar M et al. (2019b) Non-monsoonal precipitation response over the western Himalayas to climate change. Clim Dyn 52:4091–4109

    Google Scholar 

  • Krishnan R, Shrestha AB, Ren G, Rajbhandari R, Saeed S et al. (2019a) Unravelling climate change in the Hindu Kush Himalaya: rapid warming in the mountains and increasing extremes. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya. Springer, Cham, pp 57–96

    Google Scholar 

  • Krishnaswamy J, John R, Joseph S (2014) Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob Change Biol 20:203–215

    Google Scholar 

  • Kruger AC, Sekele SS (2013) Trends in extreme temperature indices in South Africa: 1962–2009. Int J Climatol 33:661–676

    Google Scholar 

  • Krysanova V, Wortmann M, Bolch T, Merz B, Duethmann D et al (2015) Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu river basin (Central Asia). Hydrol Sci J 60:566–590

    Google Scholar 

  • Kudo G, Amagai Y, Hoshino B, Kaneko M (2011) Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecol Evol 1:85–96

    Google Scholar 

  • Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton WS, Hostert P (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113:1194–1207

    Google Scholar 

  • Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR et al (2016) Hotspots of land use change in Europe. Environ Res Lett 11:064020

    Google Scholar 

  • Kuemmerle T, Olofsson P, Chaskovskyy O, Baumann M, Ostapowicz K et al (2011) Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Glob Change Biol 17:1335–1349

    Google Scholar 

  • Kueppers LM, Conlisk E, Castanha C, Moyes AB, Germino MJ et al (2017) Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob Change Biol 23:2383–2395

    Google Scholar 

  • Kulakowski D, Barbeito I, Casteller A, Kaczka RJ, Bebi P (2016) Not only temperature: interacting drivers of treeline change in Europe. Geogr Pol 89:7–15

    Google Scholar 

  • Kulkarni A (2012) Weakening of Indian summer monsoon rainfall in warming environment. Theoret Appl Climatol 109:447–459

    Google Scholar 

  • Kulkarni MA, Desrochers RE, Kajeguka DC, Kaaya RD, Tomayer A et al (2016) 10 years of environmental change on the slopes of Mount Kilimanjaro and its associated shift in malaria vector distributions. Front Public Health 4:281

    Google Scholar 

  • Kull CA, Tassin J, Rangan H (2007) Multifunctional, scrubby, and invasive forests? Wattles in the highlands of Madagascar. Mt Res Dev 27:224–231

    Google Scholar 

  • Kullman L (2008) Thermophilic tree species reinvade subalpine Sweden—early responses to anomalous late Holocene climate warming. Arct Antarct Alp Res 40:104–110

    Google Scholar 

  • Kullman L (2018) A review and analysis of factual change on the max rise of the Swedish Scandes treeline, in relation to climate change over the past 100 years. J Ecol Nat Resour 2:000150

    Google Scholar 

  • Kullman L (2019) Early signs of a fundamental subalpine ecosystem shift in the Swedish Scandes—the case of the pine (Pinus sylvestris L.) treeline ecotone. Geo-Öko 40:122–175

    Google Scholar 

  • Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Google Scholar 

  • Kullman L (2007a) Long‐term geobotanical observations of climate change impacts in the Scandes of West‐Central Sweden. Nord J Bot 24:445–467

    Google Scholar 

  • Kullman L (2007b) Modern climate change and shifting ecological states of the subalpine/alpine landscape in the Swedish Scandes. Geo-Öko 28:187–221

    Google Scholar 

  • Kumar D, Choudhary A, Dimri AP (2018) Regional climate changes over Hindukush-Karakoram-Himalaya region. In: Goel PS, Ravindra R, Chattopadhyay S (eds) Science and geopolitics of the white world. Springer, Cham, pp 143–159

    Google Scholar 

  • Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV et al (2008) Observed changes in weather and climate extremes. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (eds) Weather and climate extremes in a changing climate. CCSP, Washington DC, pp 35–80

    Google Scholar 

  • Kurt L, Ketenoglu O, Tug GN, Sekerciler F (2015) Highland vegetation of inner and eastern Anatolia and the effects of global warming. In: Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) Climate change impacts on high-altitude ecosystems. Springer, Cham, pp 275–288

    Google Scholar 

  • Kvamme M (1988) Pollen analytical studies of mountain summer farming in western Norway. In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The cultural landscape—past, present and future. Cambridge University Press, Cambridge, pp 429–443

    Google Scholar 

  • Kyriazopoulos AP, Skre O, Sarkki S, Wielgolaski FE, Abraham EM, Ficko A (2017) Human-environment dynamics in European treeline ecosystems: a synthesis based on the DPSIR framework. Climate Res 73:17–29

    Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498

    Google Scholar 

  • Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 9:557–564

    Google Scholar 

  • Körner C (2002) Mountain biodiversity, its causes and function: an overview. In: Körner C, Spehn EM (eds) Mountain biodiversity: a global assessment. Parthenon Publishing at CRC Press, London-New York, pp 3–20

    Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits, Springer, Basel

    Google Scholar 

  • Körner C (2020) Climatic controls of global high elevation treelines. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 275–281

    Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15

    Google Scholar 

  • Körner C, Ohsawa M, Spehn E, Berge E, Bugmann H et al (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington-Covelo-London, pp 681–716

    Google Scholar 

  • Küchler M, Küchler H, Bedolla A, Wohlgemuth T (2015) Response of Swiss forests to management and climate change in the last 60 years. Ann For Sci 72:311–320

    Google Scholar 

  • Lacombe G, McCartney M (2014) Uncovering consistencies in Indian rainfall trends observed over the last half century. Clim Change 123:287–299

    Google Scholar 

  • Lader R, Bhatt US, Walsh JE, Rupp TS, Bieniek PA (2016) Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J Appl Meteorol Climatol 55:901–922

    Google Scholar 

  • De Lafontaine G, Payette S (2012) How climate and fire disturbances influence contrasted dynamics of Picea glauca ecotones at alpine tree lines in atlantic and continental eastern North America. In: Myster RW (ed) Ecotones between forest and grassland. Springer, New York, pp 299–312

    Google Scholar 

  • Lamb HF, Damblon F, Maxted RW (1991) Human impact on the vegetation of the Middle Atlas, Morocco, during the last 5000 years. J Biogeogr 18:519–532

    Google Scholar 

  • Lambrechts C, Hemp C, Nnyiti P, Woodley B, Hemp A (2002) Aerial survey of the threats to Mt. Kilimanjaro forests, UNDP, Dar es Salaam

    Google Scholar 

  • Lamprecht A, Semenchuk PR, Steinbauer K, Winkler M, Pauli H (2018) Climate change leads to accelerated transformation of high-elevation vegetation in the Central Alps. New Phytol 220:447–459

    Google Scholar 

  • Lamsal P, Kumar L, Aryal A, Atreya K (2018) Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47:697–710

    Google Scholar 

  • Lamsal P, Kumar L, Shabani F, Atreya K (2017) The greening of the Himalayas and Tibetan Plateau under climate change. Global Planet Change 159:77–92

    Google Scholar 

  • Lanckriet S, Derudder B, Naudts J, Bauer H, Deckers J, Haile M, Nyssen J (2015) A political ecology perspective of land degradation in the North Ethiopian highlands. Land Degrad Dev 26:521–530

    Google Scholar 

  • Landhäusser SM, Deshaies D, Lieffers VJ (2010) Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate. J Biogeogr 37:68–76

    Google Scholar 

  • Landmann T, Dubovyk O (2014) Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int J Appl Earth Obs Geoinf 33:76–82

    Google Scholar 

  • Lange J, Carrer M, Pisaric MF, Porter TJ, Seo JW, Trouillier M, Wilmking M (2020) Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in Northwest North America. Glob Change Biol 26:1842–1856

    Google Scholar 

  • Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD (2018) Reduced arctic tundra productivity linked with landform and climate change interactions. Sci Rep 8:1–10

    Google Scholar 

  • Larsen TH, Brehm G, Navarrete H, Franco P, Gomez H et al (2011) Range shifts and extinctions driven by climate change in the tropical Andes: synthesis and directions. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, Paris, pp 47–67

    Google Scholar 

  • Larsen CF, Burgess E, Arendt AA, O'neel S, Johnson AJ, Kienholz C (2015) Surface melt dominates Alaska glacier mass balance. Geophys Res Lett 42:5902–5908

    Google Scholar 

  • Lasanta T, Beltrán O, Vaccaro I (2013) Socioeconomic and territorial impact of the ski industry in the Spanish Pyrenees: mountain development and leisure induced urbanization. Pirineos 168:103–128

    Google Scholar 

  • Lasanta-Martínez T, Vicente-Serrano SM, Cuadrat-Prats JM (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geogr 25:47–65

    Google Scholar 

  • Latif Y, Yaoming M, Yaseen M, Muhammad S, Wazir MA (2020) Spatial analysis of temperature time series over the upper Indus basin (UIB) Pakistan. Theoret Appl Climatol 139:741–758

    Google Scholar 

  • Latip NA, Marzukia A, Rais NSM (2016) Conservation and environmental impacts of tourism in Kinabalu Park, Sabah. In: Leng KS, Rahim AA, Weng CN (eds) 1st International conference on society, space & environment, 2–4 November 2016, Ramada Bintang Bali Resort, Bali, Indonesia. School of Humanities, USM, Pulau Pinang, pp 39–46

    Google Scholar 

  • Lauer W (1993) Human development and environment in the Andes: a geoecological overview. Mt Res Dev 13:157–166

    Google Scholar 

  • Lavado Casimiro WS, Labat D, Ronchail J, Espinoza JC, Guyot JL (2013) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965–2007). Hydrol Process 27:2944–2957

    Google Scholar 

  • Lavergne A, Daux V, Villalba R, Barichivich J (2015) Temporal changes in climatic limitation of tree-growth at upper treeline forests: contrasted responses along the west-to-east humidity gradient in northern Patagonia. Dendrochronologia 36:49–59

    Google Scholar 

  • Lee JW, Hong SY, Chang EC, Suh MS, Kang HS (2014) Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim Dyn 42:733–747

    Google Scholar 

  • Van Leeuwen WJ, Hartfield K, Miranda M, Meza FJ (2013) Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes Mountains. Remote Sens 5:1177–1203

    Google Scholar 

  • Lehnert LW, Wesche K, Trachte K, Reudenbach C, Bendix J (2016) Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci Rep 6:24367

    Google Scholar 

  • Leinwand II, Theobald DM, Mitchell J, Knight RL (2010) Landscape dynamics at the public–private interface: a case study in Colorado. Landsc Urban Plan 97:182–193

    Google Scholar 

  • Lemenih M, Kassa H (2014) Re-greening Ethiopia: history, challenges and lessons. Forests 5:1896–1909

    Google Scholar 

  • Lenoir J, Gégout JC, Dupouey JL, Bert D, Svenning JC (2010) Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). J Veg Sci 21:949–964

    Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Google Scholar 

  • Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, London, pp 599–611

    Google Scholar 

  • Leopold M, Völkel J, Dethier DP, Williams MW (2014) Changing mountain permafrost from the 1970s to today—comparing two examples from Niwot Ridge, Colorado Front Range, USA. Z. Für Geomorphol Supplementary Issues 58:137–157

    Google Scholar 

  • Lesica P (2014) Arctic-alpine plants decline over two decades in Glacier National Park, Montana, USA. Arct Antarct Alp Res 46:327–332

    Google Scholar 

  • Lesica P, Crone EE (2017) Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol Lett 20:166–174

    Google Scholar 

  • Li Z, He Y, Wang C, Wang X, Xin H, Zhang W, Cao W (2011) Spatial and temporal trends of temperature and precipitation during 1960–2008 at the Hengduan Mountains, China. Quatern Int 236:127–142

    Google Scholar 

  • Li C, Su F, Yang D, Tong K, Meng F, Kan B (2018) Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int J Climatol 38:708–728

    Google Scholar 

  • Li L, Zhang Y, Qi W, Wang Z, Liu Y, Ding M (2019) No significant shift of warming trend over the last two decades on the mid-south of Tibetan Plateau. Atmosphere 10:416

    Google Scholar 

  • Liang E, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 95:2453–2465

    Google Scholar 

  • Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M (2016) Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change 134:163–176

    Google Scholar 

  • Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol 190:760–769

    Google Scholar 

  • Liberati L, Messerli S, Matteodo M, Vittoz P (2019) Contrasting impacts of climate change on the vegetation of windy ridges and snowbeds in the Swiss Alps. Alp Bot 129:95–105

    Google Scholar 

  • Lichtenberger E (1988) The succession of an agricultural society to a leisure society: the high mountains of Europe. In: Allan NJR, Knapp GW, Stadel C (eds) Human impact on mountains. Rowman & Littlefield, Totowa, pp 401–436

    Google Scholar 

  • Lin X, Zhang Y, Yao Z, Gong T, Wang H et al (2008) The trend on runoff variations in the Lhasa river basin. J Geog Sci 18:95–106

    Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA (2009) Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob Ecol Biogeogr 18:485–497

    Google Scholar 

  • Linares JC, Taïqui L, Camarero JJ (2011) Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2:777–796

    Google Scholar 

  • Linsbauer A, Paul F, Machguth H, Haeberli W (2013) Comparing three different methods to model scenarios of future glacier change in the Swiss Alps. Ann Glaciol 54:241–253

    Google Scholar 

  • Linstädter A, Baumann G, Born K, Diekkrüger B, Fritzsche P, Kirscht H, Klose A (2010) Land use and land cover in southern Morocco: managing unpredictable resources and extreme events. In: Speth P, Christoph M, Diekkrüger B (eds) Impacts of global change on the hydrological cycle in West and Northwest Africa. Springer, Berlin-Heidelberg, pp 612–633

    Google Scholar 

  • Liou YA, Mulualem GM (2019) Spatio-temporal assessment of drought in Ethiopia and the impact of recent intense droughts. Remote Sens 11:1828

    Google Scholar 

  • Littell JS, Hicke JA, Shafer SL, Capalbo SM, Houston LL, Glick P (2013) Forest ecosystems. Vegetation, disturbance, and economics. In: Dalton MM, Mote PW, Snover AK (eds) Climate change in the Northwest. Island Press, Washington DC, pp 110–148

    Google Scholar 

  • Littell JS, McAfee SA, Hayward GD (2018) Alaska snowpack response to climate change: statewide snowfall equivalent and snowpack water scenarios. Water 10:668

    Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68:164–174

    Google Scholar 

  • Liu J, Watanabe T (2016) Seasonal pasture use and vegetation cover changes in the Alai Valley, Kyrgyzstan. In: Kreutzmann H, Watanabe T (eds) Mapping transition in the Pamirs. Springer, Cham, pp 113–126

    Google Scholar 

  • Liu X, Yin ZY, Shao X, Qin N (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J Geophys Res Atmos 111:D19109

    Google Scholar 

  • Liu J, Zhang W, Liu T (2017) Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. J Arid Land 9:763–777

    Google Scholar 

  • Liu G, Zhao L, Li R, Wu T, Jiao K, Ping C (2017) Permafrost warming in the context of step-wise climate change in the Tien Shan Mountains, China. Permafrost Periglac Process 28:130–139

    Google Scholar 

  • Lloyd AH, Fastie CL (2003) Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10:176–185

    Google Scholar 

  • Loeffler R, Steinicke E (2006) Amenity migration in the high mountain areas of the Sierra Nevada, USA: counterurbanization and consequences. In: Price MF (ed) Global change in mountain regions. Sapiens Publishing, Kirkmahoe, pp 221–223

    Google Scholar 

  • Lopatin E, Kolström T, Spiecker H (2008) Long-term trends in radial growth of Siberian spruce and Scots pine in Komi Republic (northwestern Russia). Boreal Environ Res 13:539–552

    Google Scholar 

  • Lord JM (2020) Nature of alpine ecosystems in temperate mountains of New Zealand. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 335–348

    Google Scholar 

  • Lorenzo C, Carrillo-Reyes A, Rioja-Paradela T, Sántiz-López E, Bolaños-Citalán J (2019) Projected impact of global warming on the distribution of two pocket mouse species with implications on the conservation of Heteromys nelsoni (Rodentia: Heteromyidae). Rev Biol Trop 67:1210–1219

    Google Scholar 

  • Lu X, Liang E, Wang Y, Babst F, Camarero JJ (2020) Mountain treelines climb slowly despite rapid climate warming. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.13214

    Article  Google Scholar 

  • Luintel H, Bluffstone RA, Scheller RM (2018) The effects of the Nepal community forestry program on biodiversity conservation and carbon storage. PLoS ONE 13:e0199526

    Google Scholar 

  • Lundmark L (2007) Reindeer pastoralism in Sweden 1550–1950. Rangifer Rep 12:9–16

    Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4:587–592

    Google Scholar 

  • Lutz DA, Powell RL, Silman MR (2013) Four decades of Andean timberline migration and implications for biodiversity loss with climate change. PLoS ONE 8:e74496

    Google Scholar 

  • Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecolss 5:147–156

    Google Scholar 

  • Lynch CM, Barr ID, Mullan D, Ruffell A (2016) Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century. Cryosphere 10:1809–1821

    Google Scholar 

  • Lyu L, Zhang QB, Pellatt MG, Büntgen U, Li MH, Cherubini P (2019) Drought limitation on tree growth at the northern hemisphere’s highest tree line. Dendrochronologia 53:40–47

    Google Scholar 

  • López-Moreno JI, Morán-Tejeda E, Vicente-Serrano SM, Bazo J, Azorin-Molina C et al (2016) Recent temperature variability and change in the Altiplano of Bolivia and Peru. Int J Climatol 36:1773–1796

    Google Scholar 

  • López-Sandoval M, Maldonado P (2019) Change, collective action, and cultural resilience in páramo management in Ecuador. Mt Res Dev 39:R1–R9

    Google Scholar 

  • Löffler J (2004) Degradation of high mountain ecosystems in northern Europe. J Mt Sci 1:97–115

    Google Scholar 

  • Löffler J (2007) Reindeer grazing changes diversity patterns in arctic-alpine landscapes in northern Norway. Erde 138:215–233

    Google Scholar 

  • Löffler J, Anschlag K, Baker B, Finch OD, Diekkrueger B et al (2011) Mountain ecosystem response to global change. Erdkunde 65:189–213

    Google Scholar 

  • Löffler J, Lundberg A, Rössler O, Bräuning A, Jung G, Pape R, Wundram D (2004) The alpine treeline under changing land use and changing climate: approach and preliminary results from continental Norway. Nor Geogr Tidsskr-Norw J Geogr 58:183–193

    Google Scholar 

  • Mackintosh AN, Anderson BM, Lorrey AM, Renwick JA, Frei P, Dean SM (2017) Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat Commun 8:1–13

    Google Scholar 

  • Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E et al (2014) Central and South America. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1499–1566

    Google Scholar 

  • Mainali K, Shrestha BB, Sharma RK, Adhikari A, Gurarie E, Singer M, Parmesan C (2020) Contrasting responses to climate change at Himalayan treelines revealed by population demographics of two dominant species. Ecol Evol 10:1209–1222

    Google Scholar 

  • Mal S, Mehta M, Singh RB, Schickhoff U, Bisht MPS (2019) Recession and morphological changes of the debris-covered Milam glacier in Gori Ganga valley, Central Himalaya, India, derived from satellite data. Front Environ Sci 7:42

    Google Scholar 

  • Mal S, Singh RB, Schickhoff U (2016) Estimating recent glacier changes in Central Himalaya, India, using remote sensing data. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 205–218

    Google Scholar 

  • Malanson GP, Brown DG, Butler DR, Cairns DM, Fagre DB, Walsh SJ (2009) Ecotone dynamics: invasibility of alpine tundra by tree species from the subalpine forest. In: Butler DR, Malanson GP, Walsh SJ, Fagre DB (eds) The changing alpine treeline: the example of Glacier National Park, MT, USA. Elsevier, Amsterdam, pp 35–61

    Google Scholar 

  • Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF et al (2007) Alpine treeline of western North America: linking organism-to-landscape dynamics. Phys Geogr 28:378–396

    Google Scholar 

  • Malanson GP (2020) Ongoing change in the alpine biome of North America. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 581–588

    Google Scholar 

  • Malanson GP, Rose JP, Schroeder PJ, Fagre DB (2011) Contexts for change in alpine tundra. Phys Geogr 32:97–113

    Google Scholar 

  • Malfasi F, Cannone N (2020) Climate warming persistence triggered tree ingression after shrub encroachment in a high alpine tundra. Ecosystems: https://doi.org/10.1007/s10021-020-00495-7

  • Malmros JK, Mernild SH, Wilson R, Tagesson T, Fensholt R (2018) Snow cover and snow albedo changes in the Central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sens Environ 209:240–252

    Google Scholar 

  • Mamet SD, Kershaw GP (2012) Subarctic and alpine tree line dynamics during the last 400 years in north‐western and central Canada. J Biogeogr 39:855–868

    Google Scholar 

  • Manish K, Telwala Y, Nautiyal DC, Pandit MK (2016) Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from eastern Himalaya, India. Model Earth Syst Environ 2:92

    Google Scholar 

  • Marchane A, Jarlan L, Hanich L, Boudhar A, Gascoin S et al (2015) Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens Environ 160:72–86

    Google Scholar 

  • Marchane A, Tramblay Y, Hanich L, Ruelland D, Jarlan L (2017) Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrol Sci J 62:979–995

    Google Scholar 

  • Marchant C (2010) Paths to sustainable development in the Andes. In: Borsdorf A, Grabherr G, Heinrich K, Scott B, Stötter J (eds) Challenges for mountain regions—tackling complexity. Böhlau, Wien, pp 146–153

    Google Scholar 

  • Marchant R, Richer S, Boles O, Capitani C, Courtney-Mustaphi CJ et al (2018) Drivers and trajectories of land cover change in East Africa: human and environmental interactions from 6000 years ago to present. Earth Sci Rev 178:322–378

    Google Scholar 

  • Marchant R, Taylor D (1998) Dynamics of montane forest in Central Africa during the late Holocene: a pollen-based record from western Uganda. The Holocene 8:375–381

    Google Scholar 

  • Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan mountains, Central Asia. Global Planet Change 56:311–327

    Google Scholar 

  • Margulis SA, Cortés G, Girotto M, Huning LS, Li D, Durand M (2016) Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery. Geophys Res Lett 43:6341–6349

    Google Scholar 

  • Martin-Mikle CJ, Fagre DB (2019) Glacier recession since the Little Ice Age: implications for water storage in a Rocky Mountain landscape. Arct Antarct Alp Res 51:280–289

    Google Scholar 

  • Marty C, Tilg AM, Jonas T (2017) Recent evidence of large-scale receding snow water equivalents in the European Alps. J Hydrometeorol 18:1021–1031

    Google Scholar 

  • Martínez-Vilalta J, Lloret F (2016) Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Global Planet Change 144:94–108

    Google Scholar 

  • Marzeion B, Jarosch AH, Gregory JM (2014) Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. Cryosphere 8:59–71

    Google Scholar 

  • Masek JG, Cohen WB, Leckie D, Wulder MA, Vargas R et al. (2011) Recent rates of forest harvest and conversion in North America. J Geophys Res Biogeosciences 116:G00K03

    Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global Planet Change 60:85–100

    Google Scholar 

  • Mathez-Stiefel SL, Peralvo M, Báez S, Rist S, Buytaert W et al (2017) Research priorities for the conservation and sustainable governance of Andean forest landscapes. Mt Res Dev 37:323–339

    Google Scholar 

  • Mathieu J (2015) Die Alpen—Raum, Kultur, Geschichte, Reclam, Stuttgart

    Google Scholar 

  • Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17:6–16

    Google Scholar 

  • Matteodo M, Ammann K, Verrecchia EP, Vittoz P (2016) Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecol Evol 6:6969–6982

    Google Scholar 

  • Maurer K, Weyand A, Fischer M, Stöcklin J (2006) Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol Cons 130:438–446

    Google Scholar 

  • McCann JC (1995) People of the plow. An agricultural history of Ethiopia, 1800–1990. University of Wisconsin Press, London

    Google Scholar 

  • McGlone M, Walker S, Hay R, Christie J (2010) Climate change, natural systems and their conservation in New Zealand. In: Nottage RAC, Wratt DS, Bornman JF, Jones K (eds) Climate change adaptation in New Zealand. New Zealand Climate Change Centre, Wellington, pp 82–99

    Google Scholar 

  • McGrath D, Sass L, O’Neel S, Arendt A, Kienholz C (2017) Hypsometric control on glacier mass balance sensitivity in Alaska and Northwest Canada. Earth’s Future 5:324–336

    Google Scholar 

  • McGregor HV, Dupont L, Stuut JBW, Kuhlmann H (2009) Vegetation change, goats, and religion: a 2000-year history of land use in southern Morocco. Quatern Sci Rev 28:1434–1448

    Google Scholar 

  • McNabb RW, Hock R (2014) Alaska tidewater glacier terminus positions, 1948–2012. J Geophys Res Earth Surf 119:153–167

    Google Scholar 

  • McNeill JR (1992) The mountains of the Mediterranean world. Cambridge University Press, Cambridge, An environmental history

    Google Scholar 

  • McNicol BJ, Glorioso RS (2014) Second home leisure landscapes and retirement in the Canadian Rocky Mountain community of Canmore, Alberta. Ann Leisure Res 17:27–49

    Google Scholar 

  • Meier WJH, Grießinger J, Hochreuther P, Braun MH (2018) An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front Earth Sci 6:62

    Google Scholar 

  • Mekasha A, Nigatu L, Tesfaye K, Duncan AJ (2013) Modeling the response of tropical highland herbaceous grassland species to climate change: the case of the Arsi Mountains of Ethiopia. Biol Cons 168:169–175

    Google Scholar 

  • Melaas EK, Sulla-Menashe D, Friedl MA (2018) Multidecadal changes and interannual variation in springtime phenology of North American temperate and boreal deciduous forests. Geophys Res Lett 45:2679–2687

    Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (eds) (2014) Climate change impacts in the United States: the third national climate assessment. Washington DC, U.S, Global Change Research Program

    Google Scholar 

  • Mengistu D, Bewket W, Lal R (2014) Recent spatiotemporal temperature and rainfall variability and trends over the upper Blue Nile river basin, Ethiopia. Int J Climatol 34:2278–2292

    Google Scholar 

  • Menounos B, Hugonnet R, Shean D, Gardner A, Howat I et al (2019) Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength. Geophys Res Lett 46:200–209

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Roy DB (2006) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504

    Google Scholar 

  • Mernild SH, Beckerman AP, Yde JC, Hanna E, Malmros JK, Wilson R, Zemp M (2015) Mass loss and imbalance of glaciers along the Andes Cordillera to the sub-Antarctic islands. Glob Planet Change 133:109–119

    Google Scholar 

  • Mernild SH, Liston GE, Hiemstra CA, Malmros JK, Yde JC, McPhee J (2017) The Andes Cordillera. Part I: snow distribution, properties, and trends (1979–2014). Int J Climatol 37:1680–1698

    Google Scholar 

  • Meshinev T, Apostolova I, Koleva E (2000) Influence of warming on timberline rising: a case study on Pinus peuce Griseb. in Bulgaria. Phytocoenologia 30:431–438

    Google Scholar 

  • Messerli B (2012) Global change and the world’s mountains. Mt Res Dev 32:S1

    Google Scholar 

  • Messerli B (1999) The global mountain problematique. In: Price MF (ed) Global change in the mountains. Parthenon Publishing Group, New York-London, pp 1–3

    Google Scholar 

  • Messerli B, Winiger M (1992) Climate, environmental change, and resources of the African mountains from the Mediterranean to the equator. Mt Res Dev 12:315–336

    Google Scholar 

  • Michelsen O, Syverhuset AO, Pedersen B, Holten JI (2011) The impact of climate change on recent vegetation changes on Dovrefjell, Norway. Diversity 3:91–111

    Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact: Carl Troll’s “Asymmetrical zonation of the humid vegetation types of the world” of 1948 reconsidered. Erdkunde 54:34–50

    Google Scholar 

  • Miehe G, Miehe S, Böhner J, Bäumler R, Ghimire SK et al (2015) Vegetation ecology. In: Miehe G, Pendry CA, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, pp 385–472

    Google Scholar 

  • Miehe G, Miehe S, Böhner J, Kaiser K, Hensen I et al (2014) How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quatern Sci Rev 86:190–209

    Google Scholar 

  • Miehe G (2015) Glacial foreland successions. In: Miehe G, Pendry CA, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, pp 80–90

    Google Scholar 

  • Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T et al (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands—origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Google Scholar 

  • Miehe G (1997) Alpine vegetation types of the Central Himalaya. In: Wielgolaski FE (ed) Polar and alpine tundra. Ecosystems of the World 3. Elsevier, Amsterdam, pp 161–184

    Google Scholar 

  • Miehe G, Miehe S (1994) Ericaceous forests and heathlands in the Bale Mountains of South Ethiopia. Ecology and man’s impact. Warnke Verlag, Reinbek

    Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo L, Schlütz F (2009a) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276:130–147

    Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2009b) Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quat Res 71:255–265

    Google Scholar 

  • Mietkiewicz N, Kulakowski D, Rogan J, Bebi P (2017) Long-term change in sub-alpine forest cover, tree line and species composition in the Swiss Alps. J Veg Sci 28:951–964

    Google Scholar 

  • Mika M (2013) Spatial patterns of second homes development in the Polish Carpathians. In: Kozak J, Ostapowicz K, Bytnerowicz A, Wyzga B (eds) The Carpathians: integrating nature and society towards sustainability. Springer, Berlin, pp 497–512

    Google Scholar 

  • Millar CI, Rundel PW (2016) Subalpine forests. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 579–611

    Google Scholar 

  • Millar CI, Westfall RD, Delany DL, Flint AL, Flint LE (2015) Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013) in the western Great Basin, USA. Can J For Res 45:1299–1312

    Google Scholar 

  • Millar CI, Westfall RD, Delany DL, King JC, Graumlich LJ (2004) Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arct Antarct Alp Res 36:181–200

    Google Scholar 

  • Miller JD, Immerzeel WW, Rees G (2012) Climate change impacts on glacier hydrology and river discharge in the Hindu Kush-Himalayas. Mt Res Dev 32:461–468

    Google Scholar 

  • Miller DJ (1997) Rangelands and pastoral development: an introduction. In: Miller DJ, Craig SR (eds) Rangelands and pastoral development in the Hindu Kush-Himalayas. ICIMOD, Kathmandu, pp 1–5

    Google Scholar 

  • Millones J (1982) Patterns of land use and associated environmental problems of the Central Andes: an integrated summary. Mt Res Dev 2:49–61

    Google Scholar 

  • Minder JR, Letcher TW, Liu C (2018) The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J Clim 31:2093–2113

    Google Scholar 

  • Mirzabaev A, Ahmed M, Werner J, Pender J, Louhaichi M (2016) Rangelands of Central Asia: challenges and opportunities. J Arid Land 8:93–108

    Google Scholar 

  • Mishra A (2014) Changing climate of Uttarakhand, India. J Geol Geosci 3:163

    Google Scholar 

  • Mishra NB, Mainali KP (2017) Greening and browning of the Himalaya: spatial patterns and the role of climatic change and human drivers. Sci Total Environ 587:326–339

    Google Scholar 

  • Missaoui K, Gharzouli R, Djellouli Y, Messner F (2020) Phenological behavior of Atlas cedar (Cedrus atlantica) forest to snow and precipitation variability in Boutaleb and Babors Mountains, Algeria. Biodiversitas J Biol Divers 21:239–245

    Google Scholar 

  • Moen J (2006) Land use in the Swedish mountain region: trends and conflicting goals. Int J Biodiver Sci Manage 2:305–314

    Google Scholar 

  • Mohajane M, Essahlaoui A, Oudija F, Hafyani ME, Hmaidi AE et al (2018) Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5:131

    Google Scholar 

  • Mohandass D, Zhao JL, Xia YM, Campbell MJ, Li QJ (2015) Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas. J Asia-Pac Biodivers 8:191–198

    Google Scholar 

  • Mohapatra J, Singh CP, Tripathi OP, Pandya HA (2019) Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. Int J Remote Sens 40:7986–8009

    Google Scholar 

  • Moiseev PA, Bartysh AA, Nagimov ZY (2010) Climate changes and tree stand dynamics at the upper limit of their growth in the North Ural Mountains. Russ J Ecol 41:486–497

    Google Scholar 

  • Molero Mesa JM, Fernández Calzado MR (2010) Evolution of the high mountain flora of Sierra Nevada (1837–2009). Acta Bot 157:659–667

    Google Scholar 

  • Molinillo M, Monasterio M (2006) Vegetation and grazing patterns in Andean environments: a comparison of pastoral systems in Punas and Páramos. In: Spehn EM, Liberman M, Körner C (eds) Land use change and mountain biodiversity. CRC, Boca Raton, pp 137–151

    Google Scholar 

  • Mollaret C, Hilbich C, Pellet C, Flores-Orozco A, Delaloye R, Hauck C (2019) Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 13:2557–2578

    Google Scholar 

  • Monasterio M (1980) Poblamiento humano y uso de la tierra en los altos Andes de Venezuela. In: Monasterio M (ed) Estudios Ecológicos en los Paramos Andinos. Editorial de la Universidad de los Andes, Mérida, pp 170–198

    Google Scholar 

  • Mong CE, Vetaas OR (2006) Establishment of Pinus wallichiana on a Himalayan glacier foreland: stochastic distribution or safe sites? Arct Antarct Alp Res 38:584–592

    Google Scholar 

  • Montanari B (2013) The future of agriculture in the High Atlas Mountains of Morocco: the need to integrate traditional ecological knowledge. In: Mann S (ed) The future of mountain agriculture. Springer, Berlin-Heidelberg, pp 51–72

    Google Scholar 

  • Mora DE, Willems P (2012) Decadal oscillations in rainfall and air temperature in the Paute river basin—southern Andes of Ecuador. Theoret Appl Climatol 108:267–282

    Google Scholar 

  • Moret P, Arauz MDLA, Gobbi M, Barragán Á (2016) Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv Divers 9:342–350

    Google Scholar 

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508

    Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Google Scholar 

  • Morris C (2017) Historical vegetation-environment patterns for assessing the impact of climatic change in the mountains of Lesotho. Afr J Range Forage Sci 34:45–51

    Google Scholar 

  • Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci 112:12741–12745

    Google Scholar 

  • Moss LA (ed) (2006) The amenity migrants: seeking and sustaining mountains and their cultures. CABI, New York

    Google Scholar 

  • Mote PW, Abatzoglou JT, Kunkel KE (2013) Climate—variability and change in the past and the future. In: Dalton MM, Mote PW, Snover AK (eds) Climate change in the Northwest. Island Press, Washington, DC, pp 25–40

    Google Scholar 

  • Mote PW, Li S, Lettenmaier DP, Xiao M, Engel R (2018) Dramatic declines in snowpack in the western US. NPJ Clim Atmos Sci 1:1–6

    Google Scholar 

  • Mote P, Snover AK, Capalbo S, Eigenbrode SD, Glick et al. (2014) Northwest. In: Melillo JM, Richmond TC, Yohe GC (eds) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, Washington, pp 487–513

    Google Scholar 

  • Mucina L, Hoare DB, Lötter MC, Du Preez PJ, Rutherford MC et al (2006) Grassland biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 348–437

    Google Scholar 

  • Mukherji A, Sinisalo A, Nüsser M, Garrard R, Eriksson M (2019) Contributions of the cryosphere to mountain communities in the Hindu Kush Himalaya: a review. Reg Environ Change 19:1311–1326

    Google Scholar 

  • Mukwada G, Manatsa D (2018) Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg mountain region of South Africa. Environ Monit Assess 190:358

    Google Scholar 

  • Mullan B, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s ‚seven-station‘ temperature series. NIWA Information Series No. 78, National Institute of Water and Atmospheric Research (NIWA), Wellington

    Google Scholar 

  • Mumba M (2008) Unravelling the, 'Mountains of the Moon'. Swara 31:22–26

    Google Scholar 

  • Munkhjargal M, Yadamsuren G, Yamkhin J, Menzel L (2020) The combination of wildfire and changing climate triggers permafrost degradation in the Khentii Mountains, northern Mongolia. Atmosphere 11:155

    Google Scholar 

  • Munro RN, Deckers J, Haile M, Grove AT, Poesen J, Nyssen J (2008) Soil landscapes, land cover change and erosion features of the Central Plateau region of Tigrai, Ethiopia: photo-monitoring with an interval of 30 years. CATENA 75:55–64

    Google Scholar 

  • Munson SM, Sher AA (2015) Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. Am J Bot 102:1268–1276

    Google Scholar 

  • Munteanu C, Kuemmerle T, Boltiziar M, Butsic V, Gimmi U (2014) Forest and agricultural land change in the Carpathian region - a meta-analysis of long-term patterns and drivers of change. Land Use Policy 38:685–697

    Google Scholar 

  • Munteanu C, Radeloff V, Griffiths P, Halada L, Kaim D et al (2017) Land change in the Carpathian Region before and after major institutional changes. In: Gutman G, Radeloff V (eds) Land-cover and land-use changes in eastern Europe after the collapse of the Soviet Union in 1991. Springer, Cham, pp 57–90

    Google Scholar 

  • Murata A, Sasaki H, Kawase H, Nosaka M, Oh’izumi M et al (2015) Projection of future climate change over Japan in ensemble simulations with a high-resolution regional climate model. Sci Online Lett Atmos 11:90–94

    Google Scholar 

  • Muñoz AA, Cavieres LA (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J Ecol 96:459–467

    Google Scholar 

  • Mwangi E, Swallow B (2008) Prosopis juliflora invasion and rural livelihoods in the Lake Baringo area of Kenya. Conserv Soc 6:130–140

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Google Scholar 

  • Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE et al (2020) Complexity revealed in the greening of the Arctic. Nat Clim Chang 10:106–117

    Google Scholar 

  • Mölg T, Chiang JC, Gohm A, Cullen NJ (2009) Temporal precipitation variability versus altitude on a tropical high mountain: observations and mesoscale atmospheric modelling. Q J Roy Meteorol Soc J Atmos Sci Appl Meteorol Phys Oceanography 135:1439–1455

    Google Scholar 

  • Mölg T, Hardy DR, Kaser G (2003) Solar-radiation-maintained glacier recession on Kilimanjaro drawn from combined ice-radiation geometry modeling. J Geophys Res Atmos 108:4731

    Google Scholar 

  • Mölg T, Rott H, Kaser G, Fischer A, Cullen NJ (2006) Comment on ‘‘Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature’’ by Richard G. Taylor, Lucinda Mileham, Callist Tindimugaya, Abushen Majugu, Andrew Muwanga, and Bob Nakileza. Geophys Res Lett 33:L20404

    Google Scholar 

  • De Mûelenaere S, Frankl A, Haile M, Poesen J, Deckers J et al (2014) Historical landscape photographs for calibration of Landsat land use/cover in the northern Ethiopian highlands. Land Degrad Dev 25:319–335

    Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Prog Phys Geogr 40:135–160

    Google Scholar 

  • Müller-Wille L, Heinrich D, Lehtola VP, Aikio P, Konstantinov Y, Vladimirova V (2006) Dynamics in human-reindeer relations: reflections on prehistoric, historic and contemporary practices in northernmost Europe. In: Forbes BC, Bölter M, Müller-Wille L, Hukkinen J, Müller F, Gunslay N, Konstantinov Y (eds) Reindeer management in northernmost Europe. Springer, Berlin, pp 27–45

    Google Scholar 

  • Naccarella A, Morgan JW, Cutler SC, Venn SE (2020) Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. PLoS ONE 15:e0231339

    Google Scholar 

  • Nebelung J (2016) Waldflächenveränderung im Nepal-Himalaya 1990—2013 unter Berücksichtigung der Community Forestry. Eine GIS- und fernerkundungsbasierte Analyse. Unpubl. Dipl. Thesis, Institute of Geography, University of Hamburg, Hamburg

    Google Scholar 

  • Negi HS, Ganju A, Kanda N, Gusain HS (2020) Climate change and cryospheric response over North-West and Central Himalaya, India. In: Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan weather and climate and their impact on the environment. Springer, Cham, pp 309–330

    Google Scholar 

  • Negi GCS, Rawal RS (2019) Himalayan biodiversity in the face of climate change. In: Garkoti SC, Van Bloem SJ, Fulé PZ, Semwal RL (eds) Tropical ecosystems: structure, functions and challenges in the face of global change. Springer, Singapore, pp 263–277

    Google Scholar 

  • Neuburger M, Steinicke E (2012) Alpine tourism in tropical Africa and sustainable development? Ugandan Rwenzori and Mt. Kenya as case studies. J Sustain Educ 3:1–31

    Google Scholar 

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C et al. (2014) Africa. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1199–1265

    Google Scholar 

  • Nie Y, Sheng Y, Liu Q, Liu L, Liu S, Zhang Y, Song C (2017) A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens Environ 189:1–13

    Google Scholar 

  • Niedrist G, Tasser E, Lüth C, Dalla Via J, Tappeiner U (2009) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202:195

    Google Scholar 

  • Niraula RR, Gilani H, Pokharel BK, Qamer FM (2013) Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal. J Environ Manage 126:20–29

    Google Scholar 

  • Niu Y, Zhu H, Yang S, Ma S, Zhou J et al (2019) Overgrazing leads to soil cracking that later triggers the severe degradation of alpine meadows on the Tibetan Plateau. Land Degrad Dev 30:1243–1257

    Google Scholar 

  • Nobis M (2008) Invasive Neophyten auch im Wald? Wald und Holz 8(08):46–49

    Google Scholar 

  • Noetzli J, Christiansen HH, Deline P, Gugliemin M, Isaksen K et al (2018) Permafrost thermal state. Bull Am Meteor Soc 99:S20–S22

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Lasanta T, López-Moreno JI (2008) Climate change in Mediterranean mountains during the 21st century. Ambio 37:280–285

    Google Scholar 

  • Nogués-Bravo D, López-Moreno JI, Vicente-Serrano SM (2012) Climate change and its impact. In: Vogiatzakis IN (ed) Mediterranean mountain environments. Wiley-Blackwell, Chichester, pp 185–200

    Google Scholar 

  • Noroozi J, Akhani H, Breckle SW (2008) Biodiversity and phytogeography of the alpine flora of Iran. Biodivers Conserv 17:493–521

    Google Scholar 

  • Noroozi J, Talebi A, Doostmohammadi M, Bagheri A (2020) The Zagros mountain range. In: Noroozi J (ed) Plant biogeography and vegetation of high mountains of Central and South-West Asia. Springer, Cham, pp 185–214

    Google Scholar 

  • Norris J, Carvalho LM, Jones C, Cannon F (2019) Deciphering the contrasting climatic trends between the Central Himalaya and Karakoram with 36 years of WRF simulations. Clim Dyn 52:159–180

    Google Scholar 

  • North MP, Stephens SL, Collins BM, Agee JK, Aplet G, Franklin JF, Fule PZ (2015) Reform forest fire management. Science 349:1280–1281

    Google Scholar 

  • Notarnicola C (2020) Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens Environ 243:111781

    Google Scholar 

  • Nunez S, Arets E, Alkemade R, Verwer C, Leemans R (2019) Assessing the impacts of climate change on biodiversity: is below 2° C enough? Clim Change 154:351–365

    Google Scholar 

  • Nyssen J, Haile M, Naudts J, Munro N, Poesen J et al (2009) Desertification? Northern Ethiopia re-photographed after 140 years. Sci Total Environ 407:2749–2755

    Google Scholar 

  • Nyssen J, Poesen J, Lanckriet S, Jacob M, Moeyersons J et al (2015) Land degradation in the Ethiopian highlands. In: Billi P (ed) Landscapes and landforms of Ethiopia. Springer, Dordrecht, pp 369–385

    Google Scholar 

  • Nyssen J, Poesen J, Moeyersons J, Deckers J, Haile M, Lang A (2004) Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth Sci Rev 64:273–320

    Google Scholar 

  • Nüsser M (2000) Change and persistence: contemporary landscape transformation in the Nanga Parbat region, northern Pakistan. Mt Res Dev 20:348–355

    Google Scholar 

  • Nüsser M (2006) Ressourcennutzung und nachhaltige Entwicklung im Kumaon-Himalaya (Indien). Geogr Rundsch 58:14–22

    Google Scholar 

  • Nüsser M, Schmidt S (2017) Nanga Parbat revisited: evolution and dynamics of sociohydrological interactions in the northwestern Himalaya. Ann Am Assoc Geogr 107:403–415

    Google Scholar 

  • Nüsser M, Schmidt S, Dame J (2012) Irrigation and development in the upper Indus basin: characteristics and recent changes of a socio-hydrological system in Central Ladakh, India. Mt Res Dev 32:51–61

    Google Scholar 

  • Nüsser M, Gerwin M (2008) Diversity, complexity and dynamics: land use patterns in the Central Himalayas of Kumaon, northern India. In: Löffler J, Stadelbauer J (eds) Diversity in mountain systems. Colloquium Geographicum 31. Asgard-Verlag, Sankt Augustin, pp 107–119

    Google Scholar 

  • Nüsser M, Dame J, Kraus B, Baghel R, Schmidt S (2019a) Socio-hydrology of “artificial glaciers” in Ladakh, India: assessing adaptive strategies in a changing cryosphere. Reg Environ Change 19:1327–1337

    Google Scholar 

  • Nüsser M, Dame J, Parveen S, Kraus B, Baghel R, Schmidt S (2019b) Cryosphere-fed irrigation networks in the northwestern Himalaya: precarious livelihoods and adaptation strategies under the impact of climate change. Mt Res Dev 39:R1-R11

    Google Scholar 

  • Odland A, Høitomt T, Olsen SL (2010) Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arct Antarct Alp Res 42:458–470

    Google Scholar 

  • Ohse B, Jansen F, Wilmking M (2012) Do limiting factors at Alaskan treelines shift with climatic regimes? Environ Res Lett 7:015505

    Google Scholar 

  • Olivares-Contreras VA, Mattar C, Gutiérrez AG, Jiménez JC (2019) Warming trends in Patagonian subantarctic forest. Int J Appl Earth Obs Geoinf 76:51–65

    Google Scholar 

  • Omondi PAO, Awange JL, Forootan E, Ogallo LA, Barakiza R et al (2014) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34:1262–1277

    Google Scholar 

  • Osipov EY, Osipova OP (2014) Mountain glaciers of Southeast Siberia: current state and changes since the Little Ice Age. Ann Glaciol 55:167–176

    Google Scholar 

  • Osorio-Castiblanco DF, Peyre G, Saldarriaga JF (2020) Physicochemical analysis and essential oils extraction of the Gorse (Ulex europaeus) and French Broom (Genista monspessulana), two highly invasive species in the Colombian Andes. Sustainability 12:57

    Google Scholar 

  • Otto M, Höpfner C, Curio J, Maussion F, Scherer D (2016) Assessing vegetation response to precipitation in Northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data. Theoret Appl Climatol 123:23–41

    Google Scholar 

  • PERMOS (2016) Permafrost in Switzerland 2010/2011 to 2013/2014. Noetzli J, Luethi R, Staub B (eds) Glaciological Report (Permafrost) No. 12–15 of the cryospheric commission of the swiss academy of sciences, Berne. https://doi.org/10.13093/permos-rep-2016-12-15

  • Palazzi E, Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118:85–100

    Google Scholar 

  • Palazzi E, Mortarini L, Terzago S, von Hardenberg J (2019) Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim Dyn 52:2685–2702

    Google Scholar 

  • Palombo C, Chirici G, Marchetti M, Tognetti R (2013) Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosyst 147:1–11

    Google Scholar 

  • Palomo I (2017) Climate change impacts on ecosystem services in high mountain areas: a literature review. Mt Res Dev 37:179–187

    Google Scholar 

  • Panday PK, Ghimire B (2012) Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982–2006. Int J Remote Sens 33:6710–6721

    Google Scholar 

  • Pandit MK, Manish K, Koh LP (2014) Dancing on the roof of the world: ecological transformation of the Himalayan landscape. Bioscience 64:980–992

    Google Scholar 

  • Pandit MK, Sodhi NS, Koh LP, Bhaskar A, Brook BW (2007) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers Conserv 16:153–163

    Google Scholar 

  • Panthi S, Bräuning A, Zhou ZK, Fan ZX (2017) Tree rings reveal recent intensified spring drought in the Central Himalaya, Nepal. Glob Planet Change 157:26–34

    Google Scholar 

  • Panthi J, Dahal P, Shrestha ML, Aryal S, Krakauer NY et al (2015) Spatial and temporal variability of rainfall in the Gandaki river basin of Nepal Himalaya. Climate 3:210–226

    Google Scholar 

  • Papanastasis VP (2007) Land abandonment and old field dynamics in Greece. In: Cramer VA, Hobbs RJ (eds) Old fields: dynamics and restoration of abandoned farmland. Island Press, London, pp 225–246

    Google Scholar 

  • Papanastasis VP (2012) Land use changes. In: Vogiatzakis IN (ed) Mediterranean mountain environments. Wiley, Chichester, pp 159–184

    Google Scholar 

  • Pape R, Löffler J (2012) Climate change, land use conflicts, predation and ecological degradation as challenges for reindeer husbandry in northern Europe: what do we really know after half a century of research? Ambio 41:421–434

    Google Scholar 

  • Park T, Ganguly S, Tømmervik H, Euskirchen ES, Høgda KA et al (2016) Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ Res Lett 11:084001

    Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Google Scholar 

  • Parveen S, Winiger M, Schmidt S, Nüsser M (2015) Irrigation in upper Hunza: evolution of socio-hydrological interactions in the Karakoram, northern Pakistan. Erdkunde 69–85

    Google Scholar 

  • Pathak BR, Yi X, Bohara R (2017) Community based forestry in Nepal: status, issues and lessons learned. Int J Sci 6:119–129

    Google Scholar 

  • Patle GT, Sengdo D, Tapak M (2019) Trends in major climatic parameters and sensitivity of evapotranspiration to climatic parameters in the eastern Himalayan region of Sikkim, India. J Water Clim Change 11:491–502

    Google Scholar 

  • Patricola CM, Cook KH (2010) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35:193–212

    Google Scholar 

  • Patton AI, Rathburn SL, Capps DM (2019) Landslide response to climate change in permafrost regions. Geomorphology 340:116–128

    Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486

    Google Scholar 

  • Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T et al (2016) Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 18:345–353

    Google Scholar 

  • Paudel KP, Andersen P (2010) Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in upper Mustang, Trans Himalaya, Nepal. Remote Sens Environ 114:1845–1855

    Google Scholar 

  • Paudel B, Zhang YL, Li SC, Liu LS, Wu X, Khanal NR (2016) Review of studies on land use and land cover change in Nepal. J Mt Sci 13:643–660

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther GR, Burga CA, Edwards PA (eds) “Fingerprints” of climate change—adapted behaviour and shifting species ranges. Springer, New York, pp 139–149

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Google Scholar 

  • Pauli H, Halloy SR (2019) High mountain ecosystems under climate change. In: Oxford research encyclopedia of climate science. https://doi.org/10.1093/acrefore/9780190228620.013.764

  • Pausas JG, Millán MM (2019) Greening and browning in a climate change hotspot: the Mediterranean basin. Bioscience 69:143–151

    Google Scholar 

  • Pawson E, Brooking T (eds) (2013) Making a new land: environmental histories of New Zealand. Otago University Press, Dunedin

    Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC et al. (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430

    Google Scholar 

  • Pepin N, Deng H, Zhang H, Zhang F, Kang S, Yao T (2019) An examination of temperature trends at high elevations across the Tibetan Plateau: The use of MODIS LST to understand patterns of elevation-dependent warming. J Geophys Res Atmos 124:5738–5756

    Google Scholar 

  • Perlik M (2019) The spatial and economic transformation of mountain regions: landscapes as commodities. Routledge, Abingdon-New York

    Google Scholar 

  • Permanent Secretariat of the Alpine Convention (ed) (2015) Demographic changes in the Alps. Report on the state of the Alps. Alpine Signals—Special Edition 5. Permanent Secretariat of the Alpine Convention, Innsbruck-Bolzano

    Google Scholar 

  • Peters T, Drobnik T, Meyer H, Rankl M, Richter M et al (2013) Environmental changes affecting the Andes of Ecuador. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R et al (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, pp 19–29

    Google Scholar 

  • Petriccione B, Bricca A (2019) Thirty years of ecological research at the Gran Sasso d’Italia LTER site: climate change in action. Nat Conserv 34:9

    Google Scholar 

  • Petrov IA, Kharuk VI, Dvinskaya ML, Im ST (2015) Reaction of coniferous trees in the Kuznetsk Alatau alpine forest-tundra ecotone to climate change. Contemp Probl Ecol 8:423–430

    Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny Mountains (NE-Spain). Glob Change Biol 9:131–140

    Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544

    Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J et al (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Change Biol 19:2303–2338

    Google Scholar 

  • Phoenix GK, Bjerke JW (2016) Arctic browning: extreme events and trends reversing arctic greening. Glob Change Biol 22:2960–2962

    Google Scholar 

  • Piao S, Liu Q, Chen A, Janssens IA, Fu Y et al (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940

    Google Scholar 

  • Piguet F, Pankhurst A (2009) Migration, resettlement and displacement in Ethiopia. In: Pankhurst A, Piguet F (eds) Moving people in Ethiopia: development, displacement and the state. Boydell & Brewer, Rochester-New York, pp 1–22

    Google Scholar 

  • Pihl E, Martin MA, Blome T, Hebden S, Jarzebski MP et al (2019) 10 new insights in climate science 2019. Future Earth & The Earth League, Stockholm

    Google Scholar 

  • Pintaldi E, Hudek C, Stanchi S, Spiegelberger T, Rivella E, Freppaz M (2017) Sustainable soil management in ski areas: threats and challenges. Sustainability 9:2150

    Google Scholar 

  • Pitcairn M, Schoenig S, Yacoub R, Gendron J (2006) Yellow starthistle continues its spread in California. Calif Agric 60:83–90

    Google Scholar 

  • Plieninger T, Hui C, Gaertner M, Huntsinger L (2014) The impact of land abandonment on species richness and abundance in the Mediterranean basin: a meta-analysis. PLoS ONE 9:e98355

    Google Scholar 

  • Pokharel B, Wang SYS, Meyer J, Marahatta S, Nepal B, Chikamoto Y, Gillies R (2019) The east–west division of changing precipitation in Nepal. Int J Climatol 40:3348–3359

    Google Scholar 

  • Pokharel BK, Mahat A, Thapa S (2011) Impact of community forestry in Nepal. Kathmandu to Jiri: a photo journey. Nepal Swiss Community Forestry Project, Kathmandu

    Google Scholar 

  • Pollnac F, Seipel T, Repath C, Rew LJ (2012) Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol Invasions 14:1753–1763

    Google Scholar 

  • Ponce-Reyes R, Reynoso-Rosales VH, Watson JE, VanDerWal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Chang 2:448–452

    Google Scholar 

  • Potter CS (2017) Satellite image mapping of tree mortality in the Sierra Nevada region of California from 2013 to 2016. J Biodivers Manage For 6:2

    Google Scholar 

  • Potthoff K (2017) Spatio-temporal patterns of birch regrowth in a western Norwegian treeline ecotone. Landsc Res 42:63–77

    Google Scholar 

  • Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R et al (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178:31–45

    Google Scholar 

  • Pratap B, Dobhal DP, Bhambri R, Mehta M, Tewari VC (2016) Four decades of glacier mass balance observations in the Indian Himalaya. Reg Environ Change 16:643–658

    Google Scholar 

  • Price MF (1998) Mountains: globally important ecosystems. Unasylva 195:3–12

    Google Scholar 

  • Price MF (2015) Mountains. A very short introduction. Oxford University Press, Oxford

    Google Scholar 

  • Price MF, Butt N (eds) (2000) Forests in sustainable mountain development: a state of knowledge report for 2000. CABI Publishing, Oxon-New York

    Google Scholar 

  • Price MF, Kohler T (2013) Sustainable mountain development. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. University of California Press, Berkeley-Los Angeles, Physical and human dimensions, pp 333–365

    Google Scholar 

  • Price MF, Gratzer G, Duguma LA, Kohler T, Maselli D, Romeo R (eds) (2011) Mountain forests in a changing world. Realizing values, addressing challenges. FAO-SDC, Rome

    Google Scholar 

  • Prinz R, Mölg T (2020) Tropische Gletscher: Ostafrika. In: Lozán JL, Breckle SW, Escher-Vetter H, Grassl H, Kasang D, Paul F, Schickhoff U (eds) Warnsignal Klima: Hochgebirge im Wandel. Wissenschaftliche Auswertungen, Hamburg, pp 141–145

    Google Scholar 

  • Prinz R, Nicholson LI, Mölg T, Gurgiser W, Kaser G (2016) Climatic controls and climate proxy potential of Lewis Glacier. Mt. Kenya. The Cryosphere 10:133–148

    Google Scholar 

  • Prinz R, Heller A, Ladner M, Nicholson LI, Kaser G (2018) Mapping the loss of Mt. Kenya’s glaciers: an example of the challenges of satellite monitoring of very small glaciers. Geosciences 8:174

    Google Scholar 

  • Priya P, Krishnan R, Mujumdar M, Houze RA (2017) Changing monsoon and midlatitude circulation interactions over the western Himalayas and possible links to occurrences of extreme precipitation. Clim Dyn 49:2351–2364

    Google Scholar 

  • Ptackova J (2012) Implementation of resettlement programmes amongst pastoralist communities in eastern Tibet. In: Kreutzmann H (ed) Pastoral practices in High Asia. Springer, Dordrecht, pp 217–234

    Google Scholar 

  • Pudas E, Leppälä M, Tolvanen A, Poikolainen J, Venäläinen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52:251–259

    Google Scholar 

  • Pyšek P, Jarošík V, Pergl J, Wild J (2011) Colonization of high altitudes by alien plants over the last two centuries. Proc Natl Acad Sci 108:439–440

    Google Scholar 

  • Pérez-García N, Font X, Ferré A, Carreras J (2013) Drastic reduction in the potential habitats for alpine and subalpine vegetation in the Pyrenees due to twenty-first-century climate change. Reg Environ Change 13:1157–1169

    Google Scholar 

  • Qamer FM, Shehzad K, Abbas S, Murthy MSR, Xi C, Gilani H, Bajracharya B (2016) Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan. Remote Sens 8:385

    Google Scholar 

  • Qasim M, Hubacek K, Termansen M, Fleskens L (2013) Modelling land use change across elevation gradients in district Swat, Pakistan. Reg Environ Change 13:567–581

    Google Scholar 

  • Qi Z, Liu H, Wu X, Hao Q (2015) Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, northwestern China. Glob Change Biol 21:816–826

    Google Scholar 

  • Qin N, Chen X, Fu G, Zhai J, Xue X (2010) Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol Process 24:3733–3744

    Google Scholar 

  • Qiu J (2016) Trouble in Tibet: rapid changes in Tibetan grasslands are threatening Asia’s main water supply and the livelihood of nomads. Nature 529:142–146

    Google Scholar 

  • Quincey DJ, Glasser NF, Cook SJ, Luckman A (2015) Heterogeneity in Karakoram glacier surges. J Geophys Res Earth Surf 120:1288–1300

    Google Scholar 

  • Quintero-Gallego ME, Quintero-Angel M, Vila-Ortega JJ (2018) Exploring land use/land cover change and drivers in Andean mountains in Colombia: a case in rural Quindío. Sci Total Environ 634:1288–1299

    Google Scholar 

  • Rabatel A, Ceballos JL, Micheletti N, Jordan E, Braitmeier M et al (2018) Toward an imminent extinction of Colombian glaciers? Geogr Ann Ser B 100:75–95

    Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Ceballos JL et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Google Scholar 

  • Rai ID, Bharti R, Adhikari BS, Rawat GS (2013) Structure and functioning of timberline vegetation in the western Himalaya: a case study. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 91–107

    Google Scholar 

  • Rai ID, Singh G, Pandey A, Rawat GS (2019) Ecology of treeline vegetation in western Himalaya: anthropogenic and climatic influences. In: Garkoti SC, Van Bloem SJ, Fulé PZ, Semwal RL (eds) Tropical ecosystems: structure, functions and challenges in the face of global change. Springer, Singapore, pp 173–192

    Google Scholar 

  • Raish C (2004) Historic and contemporary land use in southwestern grassland ecosystems. In: Finch DM (ed) Assessment of grassland ecosystem conditions in the southwestern United States. General Technical Report RMRS-GTR-135-Vol. 1. USDA Forest Service, Albuquerque, pp 86–119

    Google Scholar 

  • Ram S, Borgaonkar HP (2014) Tree-ring analysis over western Himalaya and its long-term association with vapor pressure and potential evapotranspiration. Dendrochronologia 32:32–38

    Google Scholar 

  • Ramirez-Villegas J, Cuesta F, Devenish C, Peralvo M, Jarvis A, Arnillas CA (2014) Using species distributions models for designing conservation strategies of tropical Andean biodiversity under climate change. J Nat Conserv 22:391–404

    Google Scholar 

  • Ran Y, Li X, Cheng G (2018) Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 12:595–608

    Google Scholar 

  • Rangecroft S, Suggitt AJ, Anderson K, Harrison S (2016) Future climate warming and changes to mountain permafrost in the Bolivian Andes. Clim Change 137:231–243

    Google Scholar 

  • Rangwala I, Palazzi E, Miller JR (2020) Projected climate change in the Himalayas during the twenty-first century. In: Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan weather and climate and their impact on the environment. Springer, Cham, pp 51–71

    Google Scholar 

  • Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett 8:024040

    Google Scholar 

  • Rapacciuolo G, Maher SP, Schneider AC, Hammond TT, Jabis MD et al (2014) Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Glob Change Biol 20:2841–2855

    Google Scholar 

  • Rashid I, Romshoo SA, Chaturvedi RK, Ravindranath NH, Sukumar R et al (2015) Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim Change 132:601–613

    Google Scholar 

  • Rasul G, Molden D (2019) The global social and economic consequences of mountain cryospheric change. Front Environ Sci 7:91

    Google Scholar 

  • Rasul G, Pasakhala B, Mishra A, Pant S (2020) Adaptation to mountain cryosphere change: issues and challenges. Climate Dev 12:297–309

    Google Scholar 

  • Rau P, Bourrel L, Labat D, Melo P, Dewitte B et al (2017) Regionalization of rainfall over the Peruvian Pacific slope and coast. Int J Climatol 37:143–158

    Google Scholar 

  • Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB et al (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Change Biol 14:1703–1720

    Google Scholar 

  • Raza M, Hussain D, Rasul G, Akbar M, Raza G (2015) Variations of surface temperature and precipitation in Gilgit-Baltistan (GB), Pakistan, from 1955 to 2010. J Biodivers Environ Sci 6:67–73

    Google Scholar 

  • Reddy CS, Pasha SV, Satish KV, Unnikrishnan A, Chavan SB et al (2019) Quantifying and predicting multi-decadal forest cover changes in Myanmar: a biodiversity hotspot under threat. Biodivers Conserv 28:1129–1149

    Google Scholar 

  • Rees WG, Hofgaard A, Boudreau S, Cairns DM, Harper K et al (2020) Is subarctic forest advance able to keep pace with climate change? Glob Change Biol 26:3965–3977

    Google Scholar 

  • Rehm EM, Feeley KJ (2015) The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 38:1167–1175

    Google Scholar 

  • Rehm EM, Feeley KJ (2016) Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change. Oecologia 181:1233–1242

    Google Scholar 

  • Reisinger A, Kitching RL, Chiew F, Hughes L, Newton PD et al. (2014) Australasia. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1371–1438

    Google Scholar 

  • Ren YY, Ren GY, Sun XB, Shrestha AB, You QL et al (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Chang Res 8:148–156

    Google Scholar 

  • Ren GY, Shrestha AB (2017) Climate change in the Hindu Kush Himalaya. Adv Clim Chang Res 8:137–140

    Google Scholar 

  • Resler LM, Shao Y, Campbell JB, Michaels A (2020) Land cover and land use change in an emerging national park gateway region: implications for mountain sustainability. In: Sarmiento F, Frolich LM (eds) The Elgar companion to geography, transdisciplinarity and sustainability. Edward Elgar Publishing, Cheltenham, pp 270–292

    Google Scholar 

  • Restrepo JD, Kettner AJ, Syvitski JP (2015) Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 10:13–28

    Google Scholar 

  • Rets EP, Dzhamalov RG, Kireeva MB, Frolova NL, Durmanov IN et al (2018) Recent trends of river runoff in the North Caucasus. Geogr Environ Sustain 11:61–70

    Google Scholar 

  • Rhoades RE, Thompson SI (1975) Adaptive strategies in alpine environments: beyond ecological particularism. Am Ethnol 2:535–551

    Google Scholar 

  • Rico I, Izaguirre E, Serrano E, López-Moreno JI (2017) Current glacier area in the Pyrenees: an updated assessment 2016. Pirineos 172:e029

    Google Scholar 

  • Ringler A (2016) Skigebiete der Alpen: landschaftsökologische Bilanz, Perspektiven für die renaturierung. Jb Ver Schutz Bergwelt 81:29–130

    Google Scholar 

  • Ritler A (1997) Land use, forests and the landscape of Ethiopia, 1699–1865. Soil Conservation Research Programme Ethiopia, Research Report 38, University of Berne, Berne

    Google Scholar 

  • Ritler A (2003) Forests, land use and landscape in the Central and northern Ethiopian Highlands, 1865 to 1930. Geographica Bernensia 19, University of Berne, Berne

    Google Scholar 

  • Rixen C (2013) Skiing and vegetation. In: Rixen C, Rolando A (eds) The impacts of skiing and related winter recreational activities on mountain environments. Bentham Science Publishers, Bussum, pp 65–78

    Google Scholar 

  • Rixen C, Rolando A (eds) (2013) The impacts of skiing and related winter recreational activities on mountain environments. Bentham Science Publishers, Bussum

    Google Scholar 

  • Rixen C, Wipf S (2017) Non-equilibrium in alpine plant assemblages: shifts in Europe’s summit floras. In: Catalan J, Ninot JM, Mercè Aniz M (eds) High mountain conservation in a changing world. Springer, Cham, pp 285–303

    Google Scholar 

  • Rodman KC, Veblen TT, Saraceni S, Chapman TB (2019) Wildfire activity and land use drove 20th-century changes in forest cover in the Colorado Front Range. Ecosphere 10:e02594

    Google Scholar 

  • Rohrer M, Salzmann N, Stoffel M, Kulkarni AV (2013) Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Sci Total Environ 468:S60–S70

    Google Scholar 

  • Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree-growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13:40–53

    Google Scholar 

  • Romeo R, Vita A, Testolin R, Hofer T (2015) Mapping the vulnerability of mountain peoples to food insecurity. FAO, Rome

    Google Scholar 

  • Romero HI, Smith P, Vasquez A (2009) Global changes and economic globalization in the Andes. Challenges for developing nations. In: Jandl R, Borsdorf A, Van Migroet H, Lackner R, Psenner R (eds) Global change and sustainable development in mountain regions. Innsbruck University Press, Innsbruck, pp 71–92

    Google Scholar 

  • Romero-Lankao P, Smith JB, Davidson D, Diffenbaugh N, Kinney P et al. (2014) North America. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge-New York, pp 1439–1498

    Google Scholar 

  • Romero H, Rivera A (1996) Global changes and unsustainable development in the Andes of northern Chile. In: Hurni H, Kienholz H, Wanner H, Wiesmann U (eds) Umwelt Mensch Gebirge. Beiträge zur Dynamik von Natur- und Lebensraum. Jahrbuch der Geographischen Gesellschaft Bern 59:103–110

    Google Scholar 

  • Roos C, Sullivan A III, McNamee C (2010) Paleoecological evidence for indigenous burning in the upland Southwest. In: Dean RM (ed) The archaeology of anthropogenic environments. Southern Illinois University, Carbondale, pp 142–171

    Google Scholar 

  • Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9:e82490

    Google Scholar 

  • Rottler E, Kormann C, Francke T, Bronstert A (2019) Elevation-dependent warming in the Swiss Alps 1981–2017: features, forcings and feedbacks. Int J Climatol 39:2556–2568

    Google Scholar 

  • Le Roux PC, McGeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14:2950–2962

    Google Scholar 

  • Roxy MK, Chaithra ST (2018) Impacts of climate change on the Indian summer monsoon. In: Climate change and water resources in India. Ministry of Environment, Forest and Climate Change (MoEF&CC, (ed) Mishra V, Bhatt JR. Government of India, New Delhi, pp 21–37

    Google Scholar 

  • Rudmann-Maurer K, Weyand A, Fischer M, Stöcklin J (2008) The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl Ecol 9:494–503

    Google Scholar 

  • Ruiz D, Martinson DG, Vergara W (2012) Trends, stability and stress in the Colombian Central Andes. Clim Change 112:717–732

    Google Scholar 

  • Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M et al (2018) Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci 115:1848–1853

    Google Scholar 

  • Rundel PW, Keeley JE (2016) Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California. Nat Areas J 36:277–287

    Google Scholar 

  • Rundqvist S, Hedenås H, Sandström A, Emanuelsson U, Eriksson H, Jonasson C, Callaghan TV (2011) Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40:683–692

    Google Scholar 

  • Rössler M, Kirscht H, Rademacher C, Platt S, Kemmerling B, Linstädter A (2010) Migration and resource management in the Drâa Valley, southern Morocco. In: Speth P, Christoph M, Diekkrüger B (eds) Impacts of global change on the hydrological cycle in West and Northwest Africa. Springer, Berlin-Heidelberg, pp 634–647

    Google Scholar 

  • Saavedra FA, Kampf SK, Fassnacht SR, Sibold JS (2018) Changes in Andes snow cover from MODIS data, 2000–2016. Cryosphere 12:1027–1046

    Google Scholar 

  • Sakio H, Masuzawa T (2012) The advancing timberline on Mt. Fuji: natural recovery or climate change? J Plant Res 125:539–546

    Google Scholar 

  • Salick J, Fang Z, Hart R (2019) Rapid changes in eastern Himalayan alpine flora with climate change. Am J Bot 106:520–530

    Google Scholar 

  • Salick J, Ghimire SK, Fang Z, Dema S, Konchar KM (2014) Himalayan alpine vegetation, climate change and mitigation. J Ethnobiol 34:276–293

    Google Scholar 

  • Salick J, Staver B, Hart R (2020) Indigenous knowledge and dynamics among Himalayan peoples, vegetation, and climate change. In: Welch-Devine M, Sourdril A, Burke BJ (eds) Changing climate, changing worlds. Springer, Cham, pp 55–69

    Google Scholar 

  • Salinger MJ, Fitzharris BB, Chinn T (2019) Atmospheric circulation and ice volume changes for the small and medium glaciers of New Zealand’s southern Alps mountain range 1977–2018. Int J Climatol 39:4274–4287

    Google Scholar 

  • Salomon M, Bangamwabo V, Everson T, Mutanga O, Fincham R, Allsopp N (2012) Landscapes as libraries: a history of the uKhahlamba Drakensberg from 1818 to 2009. Innov J Appropriate Librarianship Inf Work in South Afr 44:63–80

    Google Scholar 

  • Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118

    Google Scholar 

  • Sanderson LA, McLaughlin JA, Antunes PM (2012) The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85:329–340

    Google Scholar 

  • Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines. Naturalness, agriculture and the human dimension. Mt Res Dev 22:278–287

    Google Scholar 

  • Sarris D, Christodoulakis D, Körner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223

    Google Scholar 

  • Savage J, Vellend M (2015) Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38:546–555

    Google Scholar 

  • Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31:L13215

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Google Scholar 

  • Scherrer SC, Wüthrich C, Croci-Maspoli M, Weingartner R, Appenzeller C (2013) Snow variability in the Swiss Alps 1864–2009. Int J Climatol 33:3162–3173

    Google Scholar 

  • Schickhoff U (1995) Himalayan forest-cover changes in historical perspective. A case study in the Kaghan Valley, northern Pakistan. Mt Res Dev 15:3–18

    Google Scholar 

  • Schickhoff U (2002) Die Degradierung der Gebirgswälder Nordpakistans. Faktoren, Prozesse und Wirkungszusammenhänge in einem regionalen Mensch-Umwelt-System. Erdwissenschaftliche Forschung 41, Steiner Verlag, Stuttgart

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Springer, Berlin, pp 275–354

    Google Scholar 

  • Schickhoff U (2006) The forests of Hunza Valley—scarce resources under threat. In: Kreutzmann H (ed) Karakoram in transition—The Hunza Valley. Oxford University Press, Oxford-Karachi, pp 123–144

    Google Scholar 

  • Schickhoff U (2007) Die Gebirgswälder des Himalaya und Karakorum—Sinnbild für Ressourcenübernutzung und Umweltdegradierung? In: Glaser R, Kremb K (eds) Planet Erde—Asien. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 136–149

    Google Scholar 

  • Schickhoff U (2009) Human impact on high altitude forests in northern Pakistan: degradation processes and root causes. In: Singh RB (ed) Biogeography and biodiversity. Rawat Publ, Jaipur-New Delhi, pp 76–90

    Google Scholar 

  • Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington A, Blumler M, Schickhoff U (eds) Handbook of biogeography. Sage Publ, London, pp 313–337

    Google Scholar 

  • Schickhoff U (2012) Der Himalaya: Wandel eines Gebirgssystems unter dem Einfluss von Klima und Mensch. Berichte der Reinhold-Tüxen-Gesellschaft 24:103–121. Hannover

    Google Scholar 

  • Schickhoff U (2014) Die Bedeutung gemeinschaftlicher Wald- und Weidenutzung für die Entwicklung der Kulturlandschaft im Himalaya. Berichte der Reinhold-Tüxen-Gesellschaft 26:51–64

    Google Scholar 

  • Schickhoff U (2016a) Aktuelle Biodiversitätsveränderungen in Hochgebirgen. In: Lozán JL, Breckle SW, Müller R, Rachor E (eds) Warnsignal Klima: die Biodiversität. Wissenschaftliche Auswertungen, Hamburg, pp 107–112

    Google Scholar 

  • Schickhoff U (2016b) Hochgebirge: Hotspots der Biodiversität im globalen Wandel. In: Schickhoff U (ed) Biogeographie und Biodiversität. Hamburger Symposium Geographie 8, Institut für Geographie der Universität Hamburg, Hamburg, pp 73–97

    Google Scholar 

  • Schickhoff U (2019) Risikolebensraum Kathmandu (Nepal): Klima- und Umweltveränderungen im Urbanisierungsprozess einer Himalaya-Metropolregion. In: Lozán JL, Breckle SW, Graßl H, Kuttler W, Matzarakis A (eds) Warnsignal Klima: die Städte. Wissenschaftliche Auswertungen, Hamburg, pp 99–105

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP et al (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265

    Google Scholar 

  • Schickhoff U, Bobrowski M, Schwab N (2020) Alpine Waldgrenzen im Klimawandel—Wie sind die heterogenen Reaktionsmuster zu erklären? In: Lozán JL, Breckle SW, Escher-Vetter H, Grassl H, Kasang D, Paul F, Schickhoff U (eds) Warnsignal Klima: Hochgebirge im Wandel. Wissenschaftliche Auswertungen, Hamburg, pp 232–238

    Google Scholar 

  • Schickhoff U, Mal S (2020) Current changes in alpine ecosystems of Asia. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 589–598

    Google Scholar 

  • Schickhoff U, Oyunchimeg D, Jabzan J (2007) Altitudinal gradients of plant species richness as influenced by grazing in Jargalant, Mongolian Altai. In: Gunin PD (ed) Ecosystems of the Inner Asia: issues of research and conservation. Nauka, Moscow, pp 101–113

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP et al. (2016b) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 271–306

    Google Scholar 

  • Schickhoff U, Singh RB, Mal S (2016a) Climate change and dynamics of glaciers and vegetation in the Himalaya: an overview. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 1–26

    Google Scholar 

  • Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agr Ecosyst Environ 156:12–26

    Google Scholar 

  • Schirpke U, Altzinger A, Leitinger G, Tasser E (2019) Change from agricultural to touristic use: effects on the aesthetic value of landscapes over the last 150 years. Landsc Urban Plan 187:23–35

    Google Scholar 

  • Schlütz F, Zech W (2004) Palynological investigations on vegetation and climate change in the late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal. Veg Hist Archaeobotany 13:81–90

    Google Scholar 

  • Schmidt M (2005) Utilisation and management changes in South Kyrgyzstan’s mountain forests. J Mt Sci 2:91–104

    Google Scholar 

  • Schmidt M (2012) Changing human–environment interrelationships in Kyrgyzstan’s walnut-fruit forests. For Trees Livelihoods 21:253–266

    Google Scholar 

  • Schmidt S, Nüsser M (2009) Fluctuations of Raikot glacier during the past 70 years: a case study from the Nanga Parbat massif, northern Pakistan. J Glaciol 55:949–959

    Google Scholar 

  • Schmidt S, Nüsser M (2012) Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze massif, Ladakh, Northwest India. Arct Antarct Alp Res 44:107–121

    Google Scholar 

  • Schmidt-Vogt D, Miehe G (2015) Land use. In: Miehe G, Pendry CA, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, pp 287–310

    Google Scholar 

  • Schmitzberger I, Wrbka T, Steurer B, Aschenbrenner G, Peterseil J, Zechmeister HG (2005) How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agr Ecosyst Environ 108:274–290

    Google Scholar 

  • Schoolmeester T, Johansen KS, Alfthan B, Baker E, Hesping M, Verbist K (2018) The Andean glacier and water atlas: the impact of glacier retreat on water resources. UNESCO and GRID-Arendal, Paris-Arendal

    Google Scholar 

  • Schumann K, Gewolf S, Tackenberg O (2016) Factors affecting primary succession of glacier foreland vegetation in the European Alps. Alp Bot 126:105–117

    Google Scholar 

  • Schwab N, Janecka K, Kaczka RJ, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2020) Ecological relationships at a near-natural treeline, Rolwaling Valley, Nepal Himalaya: implications for the sensitivity to climate change. Erdkunde 74:15–44

    Google Scholar 

  • Schwab N, Kaczka RJ, Janecka K, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2018) Climate change-induced shift of tree growth sensitivity at a Central Himalayan treeline ecotone. Forests 9:267

    Google Scholar 

  • Schwab N, Schickhoff U, Bobrowski M, Böhner J, Bürzle B et al (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 307–345

    Google Scholar 

  • Schwab N, Schickhoff U, Bürzle B, Müller M, Böhner J et al (2017) Implications of tree species-environment relationships for the responsiveness of Himalayan krummholz treelines to climate change. J Mt Sci 14:453–473

    Google Scholar 

  • Schwartz MD, Ault TR, Betancourt JL (2013) Spring onset variations and trends in the continental USA: past and regional assessment using temperature-based indices. Int J Climatol 33:2917–2922

    Google Scholar 

  • Schöner W, Koch R, Matulla C, Marty C, Tilg AM (2019) Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half century (1961 to 2012) and linkages to climate change. Int J Climatol 39:1589–1603

    Google Scholar 

  • Scott CA, Zhang F, Mukherji A, Immerzeel W, Mustafa D, Bharati L (2019) Water in the Hindu Kush Himalaya. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment. Springer, Cham, pp 257–299

    Google Scholar 

  • Seehaus T (2020) Die Gletscher der Anden im Klimawandel. In: Lozán JL, Breckle SW, Escher-Vetter H, Grassl H, Kasang D, Paul F, Schickhoff U (eds) Warnsignal Klima: Hochgebirge im Wandel. Wissenschaftliche Auswertungen, Hamburg, pp 146–151

    Google Scholar 

  • Seehaus T, Malz P, Sommer C, Lippl S, Cochachin A, Braun M (2019) Changes of the tropical glaciers throughout Peru between 2000 and 2016 -mass balance and area fluctuations. Cryosphere 13:2537–2556

    Google Scholar 

  • Seehaus T, Malz P, Sommer C, Soruco A, Rabatel A, Braun M (2020) Mass balance and area changes of glaciers in the Cordillera Real and Tres Cruces, Bolivia, between 2000 and 2016. J Glaciol 66:124–136

    Google Scholar 

  • Seim A, Omurova G, Azisov E, Musuraliev K, Aliev K et al (2016) Climate change increases drought stress of Juniper trees in the mountains of Central Asia. PLoS ONE 11:e0153888

    Google Scholar 

  • Seimon TA, Seimon A, Yager K, Reider K, Delgado A et al (2017) Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: results from a decade of study. Ecol Evol 7:1527–1540

    Google Scholar 

  • Seipel T, Alexander JM, Edwards PJ, Kueffer C (2016) Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect Plant Ecol Evol Syst 20:46–55

    Google Scholar 

  • Seipel T, Kueffer C, Rew LJ, Daehler CC, Pauchard A et al (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob Ecol Biogeogr 21:236–246

    Google Scholar 

  • Sekar KC, Rawal RS, Chaudhery A, Pandey A, Rawat G et al (2017) First GLORIA site in Indian Himalayan region: towards addressing issue of long-term data deficiency in the Himalaya. Nat Acad Sci Lett 40:355–357

    Google Scholar 

  • Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J et al (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun 9:1–8

    Google Scholar 

  • Settele J, Scholes R, Betts R, Bunn S, Leadley P et al. (2014) Terrestrial and inland water systems. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Cambridge University Press, Cambridge-New York, pp 271–359

    Google Scholar 

  • Setten G, Austrheim G (2012) Changes in land use and landscape dynamics in mountains of northern Europe: challenges for science, management and conservation. Int J Biodiver Sci Ecosyst Serv ManageS 8:287–291

    Google Scholar 

  • Shafiq MU, Rasool R, Ahmed P, Dimri AP (2019) Temperature and precipitation trends in Kashmir Valley, northwestern Himalayas. Theoret Appl Climatol 135:293–304

    Google Scholar 

  • Shahgedanova M, Nosenko G, Khromova T, Muraveyev A (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: an assessment using remote sensing and PRECIS regional climate model. J Geophys Res Atmos 115:D16

    Google Scholar 

  • Shakya M (2016) Tourism and social capital: case studies from rural Nepal. In: McCool S, Bosak K (eds) Reframing sustainable tourism. Environmental challenges and solutions, vol. 2. Springer, Dordrecht, pp 217–239

    Google Scholar 

  • Shamsabad MM, Assadi M, Parducci L (2018) Impact of climate change implies the northward shift in distribution of the Irano-Turanian subalpine species complex Acanthophyllum squarrosum. J Asia-Pac Biodivers 11:566–572

    Google Scholar 

  • Shandra O, Weisberg P, Martazinova V (2013) Influences of climate and land use history on forest and timberline dynamics in the Carpathian mountains during the twentieth century. In: Ostapowicz K, Bytnerowicz A, Wyżga B, Kozak J (eds) The Carpathians: integrating nature and society towards sustainability. Springer, Berlin, pp 209–223

    Google Scholar 

  • Shangguan DH, Bolch T, Ding YJ, Kröhnert M, Pieczonka T, Wetzel HU, Liu SY (2015) Mass changes of southern and northern Inylchek glacier, Central Tian Shan, Kyrgyzstan, during—1975 and 2007 derived from remote sensing data. Cryosphere 9:703–717

    Google Scholar 

  • Sharkhuu A, Sharkhuu N, Etzelmüller B, Heggem ESF, Nelson FE et al. (2007) Permafrost monitoring in the Hovsgol mountain region, Mongolia. Journal of Geophysical Research: Earth Surface 112:F02S06

    Google Scholar 

  • Sharma V, Mishra VD, Joshi PK (2014) Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. Int J Remote Sens 35:3036–3056

    Google Scholar 

  • Sharma PK, Tiwari A, Shrestha BB (2020) Changes in regeneration and leaf traits of Rhododendron campanulatum along a treeline ecotone in Central Nepal. J Mt Sci 17:602–613

    Google Scholar 

  • Sharma P (2008) Unravelling the mosaic. Spatial aspects of ethnicity in Nepal. Himal Books, Lalitpur

    Google Scholar 

  • Shean DE, Bhushan S, Montesano P, Rounce DR, Arendt A, Osmanoglu B (2020) A systematic, regional assessment of High Mountain Asia glacier mass balance. Front Earth Sci 7:363

    Google Scholar 

  • Shekhar MS, Chand H, Kumar S, Srinivasan K, Ganju A (2010) Climate-change studies in the western Himalaya. Ann Glaciol 51:105–112

    Google Scholar 

  • Sherriff RL, Miller AE, Muth K, Schriver M, Batzel R (2017) Spruce growth responses to warming vary by ecoregion and ecosystem type near the forest-tundra boundary in South-West Alaska. J Biogeogr 44:1457–1468

    Google Scholar 

  • Shevtsova I, Heim B, Kruse S, Schröder J, Troeva EI et al (2020) Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ Res Lett 15:085006

    Google Scholar 

  • Shi C, Schneider L, Hu Y, Shen M, Sun C et al (2020) Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau. Environ Res Lett 15:054011

    Google Scholar 

  • Shigaeva J, Hagerman S, Zerriffi H, Hergarten C, Isaeva A, Mamadalieva Z, Foggin M (2016) Decentralizing governance of agropastoral systems in Kyrgyzstan: an assessment of recent pasture reforms. Mt Res Dev 36:91–102

    Google Scholar 

  • Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Change 11:S65–S77

    Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015) Recent treeline dynamics are similar between dry and mesic areas of Nepal, Central Himalaya. J Plant Ecol 8:347–358

    Google Scholar 

  • Shrestha UB, Shrestha AM, Aryal S, Shrestha S, Gautam MS, Ojha H (2019) Climate change in Nepal: a comprehensive analysis of instrumental data and people’s perceptions. Clim Change 154:315–334

    Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalayas and its vicinity: an analysis based on temperature records from Nepal for the period 1971–1994. J Clim 12:2775–2786

    Google Scholar 

  • Shrestha M (2017) Push and pull: a study of international migration from Nepal. Policy Research Working Paper 7965. The World Bank Group, Washington

    Google Scholar 

  • Siddiqui T, Bhagat RB, Banerjee S, Liu C, Sijapati B et al (2019) Migration in the Hindu Kush Himalaya: drivers, consequences, and governance. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds)sustainable governance of Andean Hindu Kush Himalaya assessment. Springer, Cham, pp 517–544

    Google Scholar 

  • Sigdel SR, Liang E, Wang Y, Dawadi B, Camarero JJ (2020) Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J Biogeogr 47:1816–1826

    Google Scholar 

  • Sigdel SR, Wang Y, Camarero JJ, Zhu H, Liang E, Peñuelas J (2018) Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob Change Biol 24:5549–5559

    Google Scholar 

  • Simpson M, Aravena E, Deverell J (2014) The future of mining in Chile. CSIRO, Sydney-Santiago

    Google Scholar 

  • Singh P, Arya V, Negi GCS, Singh SP (2018) Expansion of Rhododendron campanulatum krummholz in the treeline ecotone in Tungnath, Garhwal Himalaya. Trop Ecol 59:287–295

    Google Scholar 

  • Singh RB, Kumar P (2014) Climate change and glacial lake outburst floods in Himachal Himalaya, India. In: Singh M, Singh RB, Hassan MI (eds) Climate change and biodiversity. Springer, Tokyo, pp 3–14

    Google Scholar 

  • Singh RB, Mal S (2014) Trends and variability of monsoon and other rainfall seasons in western Himalaya, India. Atmos Sci Lett 15:218–226

    Google Scholar 

  • Singh CP, Mohapatra J, Pandya HA, Gajmer B, Sharma N, Shrestha DG (2020) Evaluating changes in treeline position and land surface phenology in Sikkim Himalaya. Geocarto Int 35:453–469

    Google Scholar 

  • Singh P, Negi GCS (2016) Impact of climate change on phenological responses of major forest trees of Kumaun Himalaya. ENVIS Bull Himalayan Ecol 24:112–116

    Google Scholar 

  • Singh SK, Rathore BP, Bahuguna IM (2014) Snow cover variability in the Himalayan-Tibetan region. Int J Climatol 34:446–452

    Google Scholar 

  • Singh D, Sharma V, Juyal V (2015) Observed linear trend in few surface weather elements over the Northwest Himalayas (NWH) during winter season. J Earth Syst Sci 124:553–565

    Google Scholar 

  • Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M et al (2016) Changing climate and glacio-hydrology in Indian Himalayan region: a review. Wiley Interdisc Rev Clim Change 7:393–410

    Google Scholar 

  • Singh RB, Kumar S, Kumar A (2016) Climate change in Pindari region, Central Himalaya, India. In: Singh RB, Schickhoff U, Mal S (eds) Climate change and dynamics of glaciers and vegetation in the Himalaya. Springer, Cham, pp 117–135

    Google Scholar 

  • Singh D, Ghosh S, Roxy MK, McDermid S (2019) Indian summer monsoon: extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdisciplinary Reviews: Clim Change 10:e571

    Google Scholar 

  • Singh SP, Sharma S, Dhyani PP (2019) Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodiversity and Conservation 28:1997–2016

    Google Scholar 

  • Siniscalco C, Barni E (2018) Are non-native plant species a threat to the Alps? Insights and perspectives. In: Pedrotti F (ed) Climate gradients and biodiversity in mountains of Italy. Springer, Cham, pp 91–107

    Google Scholar 

  • Sittaro F, Paquette A, Messier C, Nock CA (2017) Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob Change Biol 23:3292–3301

    Google Scholar 

  • Siyum ZG, Ayoade JO, Onilude MA, Feyissa MT (2018) Relationship between space-based vegetation productivity index and radial growth of main tree species in the dry afromontane forest remnants of northern Ethiopia. J Appl Sci Environ Manag 22:1781–1790

    Google Scholar 

  • Sloat LL, Henderson AN, Lamanna C, Enquist BJ (2015) The effect of the foresummer drought on carbon exchange in subalpine meadows. Ecosystems 18:533–545

    Google Scholar 

  • Smithers BV, North MP, Millar CI, Latimer AM (2018) Leap frog in slow motion: divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests. Glob Change Biol 24:e442–e457

    Google Scholar 

  • Sohar K, Altman J, Lehečková E, Doležal J (2017) Growth-climate relationships of Himalayan conifers along elevational and latitudinal gradients. Int J Climatol 37:2593–2605

    Google Scholar 

  • Soini E (2005) Land use change patterns and livelihood dynamics on the slopes of Mt. Kilimanjaro, Tanzania. Agric Syst 85:306–323

    Google Scholar 

  • Soja AJ, Tchebakova NM, French NH, Flannigan MD, Shugart HH et al (2007) Climate-induced boreal forest change: predictions versus current observations. Global Planet Change 56:274–296

    Google Scholar 

  • Solomon N, Hishe H, Annang T, Pabi O, Asante IK, Birhane E (2018) Forest cover change, key drivers and community perception in Wujig Mahgo Waren forest of northern Ethiopia. Land 7:32

    Google Scholar 

  • Somos-Valenzuela MA, McKinney DC, Rounce DR, Byers AC (2014) Changes in Imja Tsho in the Mount Everest region of Nepal. Cryosphere 8:1–27

    Google Scholar 

  • Sontakke NA, Singh N, Singh HN (2008) Instrumental period rainfall series of the Indian region (AD 1813–2005): revised reconstruction, update and analysis. The Holocene 18:1055–1066

    Google Scholar 

  • Spano D, Snyder RL, Cesaraccio C (2013) Mediterranean phenology. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 173–196

    Google Scholar 

  • Spasojevic MJ, Bowman WD, Humphries HC, Seastedt TR, Suding KN (2013) Changes in alpine vegetation over 21 years: are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4:1–18

    Google Scholar 

  • Speziale KL, Ezcurra C (2011) Patterns of alien plant invasions in northwestern Patagonia, Argentina. J Arid Environ 75:890–897

    Google Scholar 

  • Spiegelberger T, Matthies D, Müller-Schärer H, Schaffner U (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548

    Google Scholar 

  • Spinage CA (2012) African ecology—benchmarks and historical perspectives. Springer, Berlin

    Google Scholar 

  • Sproull GJ, Quigley MF, Sher A, González E (2015) Long-term changes in composition, diversity and distribution patterns in four herbaceous plant communities along an elevational gradient. J Veg Sci 26:552–563

    Google Scholar 

  • Srur AM, Villalba R, Rodríguez-Catón M, Amoroso MM, Marcotti E (2016) Establishment of Nothofagus pumilio at upper treelines across a precipitation gradient in the northern Patagonian Andes. Arct Antarct Alp Res 48:755–766

    Google Scholar 

  • Srur AM, Villalba R, Rodríguez-Catón M, Amoroso MM, Marcotti E (2018) Climate and Nothofagus pumilio establishment at upper treelines in the Patagonian Andes. Front Earth Sci 6:57

    Google Scholar 

  • Stanisci A, Frate L, Morra Di Cella U, Pelino G, Petey M, Siniscalco C, Carranza ML (2016) Short-term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosyst 150:227–235

    Google Scholar 

  • Steinbauer K, Lamprecht A, Semenchuk P, Winkler M, Pauli H (2020) Dieback and expansions: species-specific responses during 20 years of amplified warming in the High Alps. Alp Bot 130:1–11

    Google Scholar 

  • Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Google Scholar 

  • Steinicke E (2011) Konsequenzen der Nationalparkgründung im Ruwenzori (Uganda). Geogr Rundsch 63:57–63

    Google Scholar 

  • Stellrecht I (ed) (1998) Karakorum-Hindukush-Himalaya: dynamics of change. Parts I and II, Köppe, Cologne

    Google Scholar 

  • Stellrecht I, Winiger M (eds) (1997) Perspectives on history and change in the Karakorum, Hindukush, and Himalaya. Köppe, Cologne

    Google Scholar 

  • Stepp JR, Castaneda H, Cervone S (2005) Mountains and biocultural diversity. Mt Res Dev 25:223–227

    Google Scholar 

  • Stoffel M, Tiranti D, Huggel C (2014) Climate change impacts on mass movements—case studies from the European Alps. Sci Total Environ 493:1255–1266

    Google Scholar 

  • Stohlgren TJ, Barnett D, Flather C, Kartesz J, Peterjohn B (2005) Plant species invasions along the latitudinal gradient in the United States. Ecology 86:2298–2309

    Google Scholar 

  • Strebel N, Bühler C (2015) Recent shifts in plant species suggest opposing land-use changes in alpine pastures. Alp Bot 125:1–9

    Google Scholar 

  • Strobelt S, von Kocemba M (2020) Mensch-Umwelt-Interaktionen im äthiopischen Hochland. In: Lozán JL, Breckle SW, Escher-Vetter H, Grassl H, Kasang D, Paul F, Schickhoff U (eds) Warnsignal Klima: Hochgebirge im Wandel. Wissenschaftliche Auswertungen, Hamburg, pp 296–302

    Google Scholar 

  • Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2011) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92:496–506

    Google Scholar 

  • Stöcklin J, Bosshard A, Klaus G, Rudmann-Maurer K, Fischer M (2007) Landnutzung und biologische Vielfalt in den Alpen. Vdf Hochschulverlag, Zürich

    Google Scholar 

  • Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Plant Ecolog Divers 4:415–425

    Google Scholar 

  • Supari TF, Juneng L, Aldrian E (2017) Observed changes in extreme temperature and precipitation over Indonesia. Int J Climatol 37:1979–1997

    Google Scholar 

  • Suwal MK, Shrestha KB, Guragain L, Shakya R, Shrestha K, Bhuju DR, Vetaas OR (2016) Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecol 217:993–1002

    Google Scholar 

  • Suzuki Y (2013) Conflict between mining development and nomadism in Mongolia. In: Yamamura N, Fujita N, Maekawa A (eds) The Mongolian ecosystem network. Springer, Tokyo, pp 269–294

    Google Scholar 

  • Suárez E, Medina G (2001) Vegetation structure and soil properties in Ecuadorian páramo grasslands with different histories of burning and grazing. Arct Antarct Alp Res 33:158–164

    Google Scholar 

  • Tang Z, Wang J, Li H, Yan L (2013) Spatiotemporal changes of snow cover over the Tibetan Plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J Appl Remote Sens 7:073582

    Google Scholar 

  • Tang G, Arnone JA III, Verburg PSJ, Jasoni RL, Sun L (2015) Trends and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011. Biogeosciences 12:6985–6997

    Google Scholar 

  • Tang Z, Wang X, Wang J, Wang X, Li H, Jiang Z (2017) Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sensing 9:1045

    Google Scholar 

  • Tang KHD (2019) Climate change in Malaysia: trends, contributors, impacts, mitigation and adaptations. Sci Total Environ 650:1858–1871

    Google Scholar 

  • Tao H, Gemmer M, Bai Y, Su B, Mao W (2011) Trends of streamflow in the Tarim river basin during the past 50 years: human impact or climate change? J Hydrol 400:1–9

    Google Scholar 

  • Tarolli P, Preti F, Romano N (2014) Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6:10–25

    Google Scholar 

  • Tasser E, Ruffini FV, Tappeiner U (2009) An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landscape Ecol 24:611–628

    Google Scholar 

  • Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184

    Google Scholar 

  • Tasser E, Tappeiner U, Cernusca A (2005) Ecological effects of land-use changes in the European Alps. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions. Springer, Dordrecht, pp 409–420

    Google Scholar 

  • Tasser E, Walde J, Tappeiner U, Teutsch A, Noggler W (2007) Land-use changes and natural reforestation in the eastern Central Alps. Agr Ecosyst Environ 118:115–129

    Google Scholar 

  • Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4:271–280

    Google Scholar 

  • Tatoni T, Médail F, Roche P, Barbero M (2004) The impact of changes in land use on ecological patterns in Provence (Mediterranean France). In: Mazzoleni S, Di Pasquale G, Mulligan M, Di Martino P, Rego F (eds) Recent dynamics of the Mediterranean vegetation and landscape. Wiley, Chichester, pp 105–120

    Google Scholar 

  • Taylor DM (1990) Late quaternary pollen records from two Ugandan mires: evidence for environmental changes in the Rukiga highlands of Southwest Uganda. Palaeogeogr Palaeoclimatol Palaeoecol 80:283–300

    Google Scholar 

  • Taylor DM (1996) Mountains. In: Adams WM, Goudie A, Orme AR (eds) The physical geography of Africa. Oxford University Press, Oxford, pp 287–306

    Google Scholar 

  • Taylor RG, Mileham L, Tindimugaya C, Majugu A, Muwanga A, Nakileza B (2006) Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys Res Lett 33:L10402

    Google Scholar 

  • Tchebakova NM, Parfenova EI, Korets MA, Conard SG (2016) Potential change in forest types and stand heights in Central Siberia in a warming climate. Environ Res Lett 11:035016

    Google Scholar 

  • Tei S, Sugimoto A, Yonenobu H, Matsuura Y, Osawa A et al (2017) Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob Change Biol 23:5179–5188

    Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8:e57103

    Google Scholar 

  • Tennant C, Menounos B, Wheate R, Clague JJ (2012) Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006. Cryosphere 6:1541–1552

    Google Scholar 

  • Terskaia A, Dial RJ, Sullivan PF (2020) Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska. Ecography 43:769–778

    Google Scholar 

  • Testolin R, Attorre F, Jiménez-Alfaro B (2020) Global distribution and bioclimatic characterization of alpine biomes. Ecography 43:779–788

    Google Scholar 

  • Thakuri S, Dahal S, Shrestha D, Guyennon N, Romano E, Colombo N, Salerno F (2019) Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos Res 228:261–269

    Google Scholar 

  • Thapa UK, St. George S, Kharal DK, Gaire NP (2017) Tree growth across the Nepal Himalaya during the last four centuries. Prog Phys Geogr 41:478–495

    Google Scholar 

  • Thoman R, Walsh JE (2019) Alaska’s changing environment: documenting Alaska’s physical and biological changes through observations. International Arctic Research Center, University of Alaska Fairbanks

    Google Scholar 

  • Thompson LG (2010) Climate change: the evidence and our options. Behav Analyst 33:153–170

    Google Scholar 

  • Thompson MP, MacGregor DG, Dunn CJ, Calkin DE, Phipps J (2018) Rethinking the wildland fire management system. J Forest 116:382–390

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Porter SE (2017) Ice core records of climate and environmental variability in the tropical Andes of Peru: past, present and future. Rev De Glaciares Y Ecosistemas De Montaña 3:25–40

    Google Scholar 

  • Thompson JA, Paull DJ (2017) Assessing spatial and temporal patterns in land surface phenology for the Australian Alps (2000–2014). Remote Sens Environ 199:1–13

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Google Scholar 

  • Tielidze LG, Wheate RD (2018) The Greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan). Cryosphere 12:81–94

    Google Scholar 

  • Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169

    Google Scholar 

  • Tiwari A, Jha PK (2018) An overview of treeline response to environmental changes in Nepal Himalaya. Trop Ecol 59:273–285

    Google Scholar 

  • Tiwari A, Fan ZX, Jump AS, Li SF, Zhou ZK (2017a) Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of Central Nepal associated with climate change. Dendrochronologia 41:34–43

    Google Scholar 

  • Tiwari A, Fan ZX, Jump AS, Zhou ZK (2017b) Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans-Himalaya, Central Nepal. Plant Ecol 218:621–633

    Google Scholar 

  • Toivonen JM, Gonzales-Inca CA, Bader MY, Ruokolainen K, Kessler M (2018) Elevational shifts in the topographic position of Polylepis forest stands in the Andes of southern Peru. Forests 9:7

    Google Scholar 

  • Tolessa T, Senbeta F, Kidane M (2017) The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst Serv 23:47–54

    Google Scholar 

  • Tomiolo S, Ward D (2018) Species migrations and range shifts: a synthesis of causes and consequences. Perspect Plant Ecol Evol Syst 33:62–77

    Google Scholar 

  • Torbick N, Ge J, Qi J (2009) Changing surface conditions at Kilimanjaro indicated from multiscale imagery. Mt Res Dev 29:5–13

    Google Scholar 

  • Torta G (2004) Consequences of rural abandonment in a northern Apennines landscape (Tuscany, Italy). In: Mazzoleni S, Di Pasquale G, Mulligan M, Di Martino P, Rego F (eds) Recent dynamics of the Mediterranean vegetation and landscape. Wiley, Chichester, pp 157–165

    Google Scholar 

  • Toulmin C (2009) Climate change in Africa. Zed Books, London-New York

    Google Scholar 

  • Tovar C, Arnillas CA, Cuesta F, Buytaert W (2013a) Diverging responses of tropical Andean biomes under future climate conditions. PloS ONE 8:e63634

    Google Scholar 

  • Tovar C, Seijmonsbergen AC, Duivenvoorden JF (2013b) Monitoring land use and land cover change in mountain regions: an example in the Jalca grasslands of the Peruvian Andes. Landscape Urban Planning 112:40–49

    Google Scholar 

  • Trant AJ, Hermanutz L (2014) Advancing towards novel tree lines? A multispecies approach to recent tree line dynamics in subarctic alpine Labrador, northern Canada. J Biogeogr 41:1115–1125

    Google Scholar 

  • Treml V, Šenfeldr M, Chuman T, Ponocná T, Demková K (2016) Twentieth century treeline ecotone advance in the Sudetes Mountains (Central Europe) was induced by agricultural land abandonment rather than climate change. J Veg Sci 27:1209–1221

    Google Scholar 

  • Treml V, Veblen TT (2017) Does tree growth sensitivity to warming trends vary according to treeline form? J Biogeogr 44:1469–1480

    Google Scholar 

  • Tsogtbaatar J (2013) Deforestation and reforestation of degraded forestland in Mongolia. In: Yamamura N, Fujita N, Maekawa A (eds) The Mongolian ecosystem network. Springer, Tokyo, pp 83–98

    Google Scholar 

  • Tumusiime DM, Vedeld P, Gombya-Ssembajjwe W (2011) Breaking the law? Illegal livelihoods from a protected area in Uganda. Forest Policy Econ 13:273–283

    Google Scholar 

  • Turbelin AJ, Malamud BD, Francis RA (2017) Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob Ecol Biogeogr 26:78–92

    Google Scholar 

  • Tømmervik H, Bjerke JW, Park T, Hanssen F, Myneni RB (2019) Legacies of historical exploitation of natural resources are more important than summer warming for recent biomass increases in a boreal-arctic transition region. Ecosystems 22:1512–1529

    Google Scholar 

  • UN (United Nations) (2020) The sustainable development goals report 2020. UN, New York

    Google Scholar 

  • Uddin K, Chaudhary S, Chettri N, Kotru R, Murthy M et al (2015) The changing land cover and fragmenting forest on the roof of the world: a case study in Nepal’s Kailash Sacred Landscape. Landsc Urban Plan 141:1–10

    Google Scholar 

  • Umer M, Lamb HF, Bonnefille R, Lézine AM, Tiercelin JJ et al (2007) Late Pleistocene and Holocene vegetation history of the Bale mountains, Ethiopia. Quatern Sci Rev 26:2229–2246

    Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A et al (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307

    Google Scholar 

  • Vanat L (2020) International report on snow and mountain tourism. Overview of the key industry figures for ski resorts, April 2020. https://www.vanat.ch/RM-world-report-2020.pdf

  • Vandvik V, Halbritter AH, Telford RJ (2018) Greening up the mountain. Proc Natl Acad Sci 115:833–835

    Google Scholar 

  • Vankat JL (2013) Vegetation dynamics on the mountains and plateaus of the American Southwest. Springer, Dordrecht

    Google Scholar 

  • Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H et al (2017) Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol Res 32:579–593

    Google Scholar 

  • Vanonckelen S, Van Rompaey A (2015) Spatiotemporal analysis of the controlling factors of forest cover change in the Romanian Carpathian Mountains. Mt Res Dev 35:338–350

    Google Scholar 

  • Vanselow KA, Kraudzun T, Samimi C (2012a) Land stewardship in practice: an example from the eastern Pamirs of Tajikistan. In: Squires V (ed) Rangeland stewardship in Central Asia. Springer, Dordrecht, pp 71–90

    Google Scholar 

  • Vanselow KA, Kraudzun T, Samimi C (2012b) Grazing practices and pasture tenure in the eastern Pamirs. Mt Res Dev 32:324–337

    Google Scholar 

  • Veblen TT, Lorenz DC (1991) The Colorado Front Range. A century of ecological change. University of Utah Press, Salt Lake City

    Google Scholar 

  • Veettil BK, Kamp U (2019) Global disappearance of tropical mountain glaciers: observations, causes, and challenges. Geosciences 9:196

    Google Scholar 

  • Veettil BK, Wang S (2018a) State and fate of the remaining tropical mountain glaciers in Australasia using satellite imagery. J Mt Sci 15:495–503

    Google Scholar 

  • Veettil BK, Wang S (2018b) An update on recent glacier changes in Mexico using Sentinel-2A data. Geografiska Annaler: Series A, Phys Geogr 100:307–318

    Google Scholar 

  • Veh G, Korup O, Von Specht S, Roessner S, Walz A (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat Clim Chang 9:379–383

    Google Scholar 

  • Verbyla D, Kurkowski TA (2019) NDVI-climate relationships in high-latitude mountains of Alaska and Yukon Territory. Arct Antarct Alp Res 51:397–411

    Google Scholar 

  • Vessella F, López-Tirado J, Simeone MC, Schirone B, Hidalgo PJ (2017) A tree species range in the face of climate change: cork oak as a study case for the Mediterranean biome. Eur J Forest Res 136:555–569

    Google Scholar 

  • Vetaas OR (2007) Global changes and its effect on glaciers and cultural landscapes: historical and future considerations. In: Chaudhary RP, Aase TH, Vetaas OR, Subedi BP (eds) Local effects of global changes in the Himalayas: Manang, Nepal. Tribhuvan University-University of Bergen, Kathmandu-Bergen, pp 23–39

    Google Scholar 

  • Vicente-Serrano SM, Martín-Hernández N, Reig F, Azorin-Molina C, Zabalza J et al (2020) Vegetation greening in Spain detected from long term data (1981–2015). Int J Remote Sens 41:1709–1740

    Google Scholar 

  • Vickers H, Høgda KA, Solbø S, Karlsen SR, Tømmervik H, Aanes R, Hansen BB (2016) Changes in greening in the High Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ Res Lett 11:105004

    Google Scholar 

  • Villers-Ruiz L, Castañeda-Aguado D (2013) Species and plant community reorganization in the trans-Mexican volcanic belt under climate change conditions. J Mt Sci 10:923–931

    Google Scholar 

  • Vincent LA, Mekis É (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos Ocean 44:177–193

    Google Scholar 

  • Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin-Heidelberg, pp 411–422

    Google Scholar 

  • Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theoret Appl Climatol 112:535–551

    Google Scholar 

  • Vitali A, Garbarino M, Camarero JJ, Malandra F, Toromani E et al (2019) Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For Ecol Manage 435:28–37

    Google Scholar 

  • Vitasse Y, Porté AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198

    Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 39:1439–1449

    Google Scholar 

  • Vitasse Y, Signarbieux C, Fu YH (2018) Global warming leads to more uniform spring phenology across elevations. Proc Natl Acad Sci 115:1004–1008

    Google Scholar 

  • Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR (2008a) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19:671–680

    Google Scholar 

  • Vittoz P, Rulence B, Largey T, Freléchoux F (2008b) Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarct, Alp Res 40:225–232

    Google Scholar 

  • Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2009) Low impact of climate change on subalpine grasslands in the Swiss northern Alps. Glob Change Biol 15:209–220

    Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43:7

    Google Scholar 

  • Vowles T, Gunnarsson B, Molau U, Hickler T, Klemedtsson L, Björk RG (2017) Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. J Ecol 105:1547–1561

    Google Scholar 

  • Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99

    Google Scholar 

  • Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A et al (2018) Rapid decline of snow and ice in the tropical Andes—impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213

    Google Scholar 

  • Vuille M, Franquist E, Garreaud R, Lavado Casimiro WS, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res: Atmos 120(9):3745–3757

    Google Scholar 

  • Vuille M (2013) Climate change and water resources in the tropical Andes. Inter-American Development Bank Technical Note 515, Washington DC

    Google Scholar 

  • Vuorinen KE, Oksanen L, Oksanen T, Pyykönen A, Olofsson J, Virtanen R (2017) Open tundra persist, but arctic features decline—vegetation changes in the warming Fennoscandian tundra. Glob Change Biol 23:3794–3807

    Google Scholar 

  • Vásquez DL, Balslev H, Sklenář P (2015) Human impact on tropical-alpine plant diversity in the northern Andes. Biodivers Conserv 24:2673–2683

    Google Scholar 

  • WGMS (World Glacier Monitoring Service) (2008) Global glacier changes. Facts and figures, WGMS, Zurich

    Google Scholar 

  • WMO (World Meteorological Organization) (2019) United in science: high-level synthesis report of latest climate science information convened by the science advisory group of the UN Climate Action Summit 2019. WMO, Geneva

    Google Scholar 

  • Wagner FH (2009) Climate warming and environmental effects in the West: evidence for the twentieth century and implications for the twenty-first. In: Wagner FH (ed) Climate warming in western North America. Evidence and environmental effects. The University of Utah Press, Salt Lake City, pp 143-160

    Google Scholar 

  • Wainwright HM, Steefel C, Trutner SD, Henderson AN, Nikolopoulos EI et al (2020) Satellite-derived foresummer drought sensitivity of plant productivity in Rocky Mountain headwater catchments: spatial heterogeneity and geological-geomorphological control. Environ Res Lett 15:084018

    Google Scholar 

  • Walsh K, Giguet-Covex C (2020) A history of human exploitation of alpine regions. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 555–573

    Google Scholar 

  • Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Google Scholar 

  • Walther GR (2001) Laurophyllisation—a sign for a changing climate? In: Burga CA, Kratochwil A (eds) Biomonitoring: general and applied aspects on regional and global scales. Springer, Dordrecht, pp 207–223

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Google Scholar 

  • Walther GR, Gritti ES, Berger S, Hickler T, Tang Z, Sykes MT (2007) Palms tracking climate change. Glob Ecol Biogeogr 16:801–809

    Google Scholar 

  • Wang Y, Pederson N, Ellison AM, Buckley HL, Case BS, Liang E, Camarero JJ (2016) Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 97:1668–1679

    Google Scholar 

  • Wang Y, Wu N, Kunze C, Long R, Perlik M (2019) Drivers of change to mountain sustainability in the Hindu Kush Himalaya. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment. Springer, Cham, pp 17–56

    Google Scholar 

  • Wang X, Wu C, Wang H, Gonsamo A, Liu Z (2017) No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci Rep 7:1–10

    Google Scholar 

  • Wang SY, Yoon JH, Gillies RR, Cho C (2013) What caused the winter drought in western Nepal during recent years? J Clim 26:8241–8256

    Google Scholar 

  • Waqas A, Athar H (2019) Recent decadal variability of daily observed temperatures in Hindukush, Karakoram and Himalaya region in northern Pakistan. Clim Dyn 52:6931–6951

    Google Scholar 

  • Wasowicz P (2016) Non-native species in the vascular flora of highlands and mountains of Iceland. PeerJ 4:e1559

    Google Scholar 

  • Wassie A, Sterck FJ, Bongers F (2010) Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J Veg Sci 21:938–948

    Google Scholar 

  • Weaver T, Gustafson D, Lichthardt J (2001) Exotic plants in early and late seral vegetation of fifteen northern Rocky Mountain environments (HTs). W North Am Nat 61:417–427

    Google Scholar 

  • Weber RO, Talkner P, Auer I, Böhm R, Gajic-Capka M et al (1997) 20th century changes of temperature in the mountain regions of Central Europe. Clim Change 36:327–344

    Google Scholar 

  • Wei J, Liu S, Guo W, Yao X, Xu J, Bao W, Jiang Z (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann Glaciol 55:213–222

    Google Scholar 

  • Wei JF, Liu SY, Xu JL, Guo WQ, Bao WJ, Shangguan DH, Jiang ZL (2015) Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. J Mt Sci 12:330–343

    Google Scholar 

  • Weijers S, Myers-Smith IH, Loeffler J (2018) A warmer and greener cold world: summer warming increases shrub growth in the alpine and high Arctic tundra. Erdkunde 72:63–85

    Google Scholar 

  • Weisberg PJ, Shandra O, Becker ME (2013) Landscape influences on recent timberline shifts in the Carpathian Mountains: abiotic influences modulate effects of land-use change. Arct Antarct Alp Res 45:404–414

    Google Scholar 

  • Werners S, Szalai S, Kőpataki E, Csaba Kondor A, Musco E et al (2014) Future imperfect: climate change and adaptation in the Carpathians. GRIDArendal, Arendal

    Google Scholar 

  • Wesche K, Miehe G, Kaeppeli M (2000) The significance of fire for afroalpine ericaceous vegetation. Mt Res Dev 20:340–347

    Google Scholar 

  • Wesche K (2002) The high-altitude environment of Mt. Elgon (Uganda, Kenya): climate, vegetation, and the impact of fire. Ecotropical Monographs 2. Society of Tropical Ecology, Bonn

    Google Scholar 

  • Wesche K, Assefa Y, Von Wehrden H (2008a) Temperate grassland region: equatorial Africa (high altitude). In: Peart B (ed) Compendium of regional templates on the status of temperate grasslands conservation and protection. IUCN World Commission on Protected Areas, Vancouver, pp 41–59

    Google Scholar 

  • Wesche K, Cierjacks A, Assefa Y, Wagner S, Fetene M, Hensen I (2008b) Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecology & Diversity 1:35-46

    Google Scholar 

  • Wielgolaski FE, Inouye DW (2013) Phenology at high latitudes. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 225–247

    Google Scholar 

  • Wielgolaski FE, Hofgaard A, Holtmeier FK (2017) Sensitivity to environmental change of the treeline ecotone and its associated biodiversity in European mountains. Climate Res 73:151–166

    Google Scholar 

  • Wieser G, Holtmeier FK, Smith WK (2014) Treelines in a changing global environment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, pp 221–263

    Google Scholar 

  • Wieser G, Oberhuber W, Gruber A (2019) Effects of climate change at treeline: lessons from space-for-time studies, manipulative experiments, and long-term observational records in the Central Austrian Alps. Forests 10:508

    Google Scholar 

  • Wildeman G, Brock JH (2000) Grazing in the Southwest: history of land use and grazing since 1540. In: Jemison R, Raish C (eds) Livestock management in the American Southwest: ecology, society and economics. Elsevier Science, Amsterdam, pp 1–25

    Google Scholar 

  • Willard BE, Cooper DJ, Forbes BC (2007) Natural regeneration of alpine tundra vegetation after human trampling: a 42-year data set from Rocky Mountain National Park, Colorado, USA. Arct Antarct Alp Res 39:177–183

    Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HS (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736

    Google Scholar 

  • Wilson SJ (2016) Communal management as a strategy for restoring cloud forest landscapes in Andean Ecuador. World Development Perspectives 3:47–49

    Google Scholar 

  • Winkler DE (2020) Contemporary human impacts on alpine ecosystems: the direct and indirect effects of human-induced climate change and land use. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 574–580

    Google Scholar 

  • Winkler DE, Butz RJ, Germino MJ, Reinhardt K, Kueppers LM (2018) Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front Plant Sci 9:1140

    Google Scholar 

  • Winkler DE, Lubetkin KC, Carrell AA, Jabis MD, Yang Y, Kueppers LM (2019) Responses of alpine plant communities to climate warming. In: Mohan JE (ed) Ecosystem consequences of soil warming. Academic Press, London, pp 297–346

    Google Scholar 

  • Winkler M, Lamprecht A, Steinbauer K, Hülber K, Theurillat JP et al (2016) The rich sides of mountain summits—a pan-European view on aspect preferences of alpine plants. J Biogeogr 43:2261–2273

    Google Scholar 

  • Winsvold SH, Andreassen LM, Kienholz C (2014) Glacier area and length changes in Norway from repeat inventories. Cryosphere 8:1885–1903

    Google Scholar 

  • Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecolog Divers 6:447–455

    Google Scholar 

  • Wolken JM, Mann DH, Grant TA III, Lloyd AH, Rupp TS, Hollingsworth TN (2016) Climate-growth relationships along a black spruce toposequence in interior Alaska. Arct Antarct Alp Res 48:637–652

    Google Scholar 

  • Wondie M, Schneider W, Melesse AM, Teketay D (2011) Spatial and temporal land cover changes in the Simen Mountains National Park, a World Heritage Site in northwestern Ethiopia. Remote Sens 3:752–766

    Google Scholar 

  • Workie TG, Debella HJ (2018) Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob Ecol Conserv 13:e00366

    Google Scholar 

  • Wu N, Rawat GS, Sharma E (2013) High-altitude ecosystem interfaces in the Hindu Kush Himalayan region. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 3–14

    Google Scholar 

  • Wunderle S, Gross T, Hüsler F (2016) Snow extent variability in Lesotho derived from MODIS data (2000–2014). Remote Sens 8:448

    Google Scholar 

  • Wyckoff W, Dilsaver LM (eds) (1995) The mountainous West: explorations in historical geography. University of Nebraska Press, Lincoln

    Google Scholar 

  • Xie J, Kneubühler M, Garonna I, Notarnicola C, De Gregorio L et al (2017) Altitude-dependent influence of snow cover on alpine land surface phenology. J Geophys Res Biogeosci 122:1107–1122

    Google Scholar 

  • Xu G, Zhang H, Chen B, Zhang H, Innes JL et al (2014) Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sens 6:3263–3283

    Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Google Scholar 

  • Xu J, Badola R, Chettri N, Chaudhary RP, Zomer R et al (2019) Sustaining biodiversity and ecosystem services in the Hindu Kush Himalaya. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment. Springer, Cham, pp 127–165

    Google Scholar 

  • Yadava AK, Sharma YK, Dubey B, Singh J, Singh V et al (2017) Altitudinal treeline dynamics of Himalayan pine in western Himalaya, India. Quatern Int 444:44–52

    Google Scholar 

  • Yan L, Liu X (2014) Has climatic warming over the Tibetan Plateau paused or continued in recent years? J Earth Ocean Atmos Sci 1:13–28

    Google Scholar 

  • Yang B, He M, Shishov V, Tychkov I, Vaganov E et al (2017) New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc Natl Acad Sci 114:6966–6971

    Google Scholar 

  • Yang J, Tan C, Zhang T (2013) Spatial and temporal variations in air temperature and precipitation in the Chinese Himalayas during the 1971–2007. Int J Climatol 33:2622–2632

    Google Scholar 

  • Yang X, Zhang T, Qin D, Kang S, Qin X (2011) Characteristics and changes in air temperature and glacier’s response on the north slope of Mt. Qomolangma (Mt. Everest). Arct Antarct Alp Res 43:147–160

    Google Scholar 

  • Yao T, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res 39:642–650

    Google Scholar 

  • Yarnall K, Price M (2010) Migration, development and a new rurality in the Valle Alto, Bolivia. J Lat Am Geogr 9:107–124

    Google Scholar 

  • Ye B, Yang D, Jiao K, Han T, Jin Z, Yang H, Li Z (2005) The Urumqi river source glacier No. 1, Tianshan, China: changes over the past 45 years. Geophys Res Lett 32:21

    Google Scholar 

  • Ye H, Cohen J (2013) A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ Res Lett 8:014052

    Google Scholar 

  • Ye Q, Zong J, Tian L, Cogley JG, Song C, Guo W (2017) Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s—2000–13. J Glaciol 63:273–287

    Google Scholar 

  • Yin G, Hu Z, Chen X, Tiyip T (2016) Vegetation dynamics and its response to climate change in Central Asia. J Arid Land 8:375–388

    Google Scholar 

  • You J, Qin X, Ranjitkar S, Lougheed SC, Wang M et al (2018) Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci Rep 8:1–12

    Google Scholar 

  • You Q, Min J, Kang S (2016) Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int J Climatol 36:2660–2670

    Google Scholar 

  • You QL, Ren GY, Zhang YQ, Ren YY, Sun XB et al (2017) An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv Clim Chang Res 8:141–147

    Google Scholar 

  • Young KR (2009) Andean land use and biodiversity: humanized landscapes in a time of change. Ann Mo Bot Gard 96:492–507

    Google Scholar 

  • Young KR, León B, Jørgensen PM, Ulloa Ulloa C (2007) Tropical and subtropical landscapes of the Andes. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 200–216

    Google Scholar 

  • Young KR, Ponette-González AG, Polk MH, Lipton JK (2017) Snowlines and treelines in the tropical Andes. Ann Am Assoc Geogr 107:429–440

    Google Scholar 

  • Yu L, Liu T, Zhang S (2017) Temporal and spatial changes in snow cover and the corresponding radiative forcing analysis in Siberia from the 1970s to the 2010s. Advances in Meteorology 2017: ID 9517427

    Google Scholar 

  • Yu Q, Jia DR, Tian B, Yang YP, Duan YW (2016) Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century. Sci Rep 6:1–4

    Google Scholar 

  • Yucel I, Güventürk A, Sen OL (2015) Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. Int J Climatol 35:215–228

    Google Scholar 

  • Zaehringer JG, Wambugu G, Kiteme B, Eckert S (2018) How do large-scale agricultural investments affect land use and the environment on the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers’ perceptions and remote sensing. J Environ Manage 213:79–89

    Google Scholar 

  • Zekollari H, Fürst JJ, Huybrechts P (2014) Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future. J Glaciol 60:1155–1168

    Google Scholar 

  • Zekollari H, Huss M, Farinotti D (2019) Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere 13:1125–1146

    Google Scholar 

  • Zeleke G, Hurni H (2001) Implications of land use and land cover dynamics for mountain resource degradation in the northwestern Ethiopian highlands. Mt Res Dev 21:184–191

    Google Scholar 

  • Zemmrich A, Hilbig W, Oyuunchimeg D (2010) Plant communities along an elevation gradient under special consideration of grazing in western Mongolia. Phytocoenologia 40:91–115

    Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Google Scholar 

  • Zemp M, Huss M, Thibert E, Eckert N, McNabb R et al (2019) Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568:382–386

    Google Scholar 

  • Zeng H, Jia G, Epstein H (2011) Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ Res Lett 6:045508

    Google Scholar 

  • Zewdie W, Csaplovics E, Inostroza L (2017) Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability. Appl Geogr 79:167–178

    Google Scholar 

  • Zhan YJ, Ren GY, Shrestha AB, Rajbhandari R, Ren YY et al (2017) Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Adv Clim Chang Res 8:166–175

    Google Scholar 

  • Zhang G, Yao T, Xie H, Wang W, Yang W (2015) An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global Planet Change 131:148–157

    Google Scholar 

  • Zhang J, Chen H, Zhang Q (2019) Extreme drought in the recent two decades in northern China resulting from Eurasian warming. Clim Dyn 52:2885–2902

    Google Scholar 

  • Zhang X, Flato G, Kirchmeier-Young M, Vincent L, Wan H et al. (2019) Changes in temperature and precipitation across Canada. In: Bush E, Lemmen DS (eds) Canada’s changing climate report. Government of Canada, Ottawa, pp 112–193

    Google Scholar 

  • Zhang Y, Enomoto H, Ohata T, Kitabata H, Kadota T, Hirabayashi Y (2017) Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990–2011. J Hydrol 553:662–677

    Google Scholar 

  • Zhang Y, Liu L, Wang Z, Bai W, Ding M et al. (2019b) Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin Sci Bull 64:2865–2875

    Google Scholar 

  • Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafrost Periglac Process 21:198–207

    Google Scholar 

  • Zimmer A, Meneses RI, Rabatel A, Soruco A, Dangles O, Anthelme F (2018) Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect Plant Ecol Evol Syst 30:89–102

    Google Scholar 

  • Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010) Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agr Ecosyst Environ 139:13–22

    Google Scholar 

  • Zomer RJ, Trabucco A, Metzger MJ, Wang M, Oli KP, Xu J (2014) Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Clim Change 125:445–460

    Google Scholar 

  • Zong S, Xu J, Dege E, Wu Z, He H (2016) Effective seed distribution pattern of an upward shift species in alpine tundra of Changbai Mountains. Chin Geogra Sci 26:48–58

    Google Scholar 

  • Zorio SD, Williams CF, Aho KA (2016) Sixty-five years of change in montane plant communities in western Colorado, USA. Arct Antarct Alp Res 48:703–722

    Google Scholar 

  • Zurick D, Pacheco J (2006) Illustrated atlas of the Himalaya. University Press of Kentucky, Lexington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Schickhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schickhoff, U., Bobrowski, M., Mal, S., Schwab, N., Singh, R. (2022). The World’s Mountains in the Anthropocene. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_1

Download citation

Publish with us

Policies and ethics