Skip to main content

Zero-Emission Vehicles Sonification Strategy Based on Shepard-Risset Glissando

  • Conference paper
  • First Online:
Perception, Representations, Image, Sound, Music (CMMR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12631))

Included in the following conference series:

Abstract

In this paper, we present a sonification strategy developed for electric vehicles aiming to synthetize a new engine sound to enhance the driver’s dynamic perception of the vehicle. We chose to mimic the internal combustion engine (ICE) noise by informing the driver through pitch variations. However, ICE noise pitch variations are correlated to the engine’s rotations per minute (RPM) and its dynamics is covered within a limited vehicle speed range. In order to provide the driver with extended pitch variations throughout the full vehicle speed range, we based our sonification strategy on the Shepard-Risset glissando. Such illusory infinite ascending/descending sounds enable to represent accelerations with significant pitch variations for an unlimited range of speeds. In this way, it is possible to conserve the metaphor of ICE noise with unheard gearshifts. We tested this sonification strategy in a perceptual test in a driving simulator and showed that the mapping of this acoustical feedback affects the drivers’ perception of vehicle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altinstoy, E.: The detectability of conventional, hybrid and electric vehicle sounds by sighted, visually impaired and blind pedestrians. In: Internoise 2013, Innsbruck (2013)

    Google Scholar 

  2. Ashmead, D.H., et al.: Auditory perception of motor vehicle travel paths. Hum. Fact. J. Hum. Fact. Ergon. Soc. 54(3), 437–453 (2012)

    Article  Google Scholar 

  3. Bressolettte, B., Denjean, S., Roussarie, V., Aramaki, M., Ystad, S., Kronland-Martinet, R.: Harnessing audio in auto control: the challenge of sonifying virtual objects for gesture control of cars. IEEE Consum. Electron. Mag. 7(2), 91–100 (2018)

    Article  Google Scholar 

  4. Chamard, J.C., Roussarie, V., et al.: Design of electric or hybrid vehicle alert sound system for pedestrian. In: Acoustics 2012, Nantes (2012)

    Google Scholar 

  5. Danna, J., et al.: The effect of real-time auditory feedback on learning new characters. Hum. Mov. Sci. 43, 216–228 (2015). https://doi.org/10.1016/j.humov.2014.12.002

    Article  Google Scholar 

  6. Denjean, S., Velay, J.L., Kronland-Martinet, R., Roussarie, V., Sciabica, J.F., Ystad, S.: Are electric and hybrid vehicles too quiet for drivers? In: Internoise 2013, Innsbruck, pp. 3081–3090 (2013)

    Google Scholar 

  7. Deutsch, D.: The paradox of pitch circularity. Acoust. Today 7, 8–14 (2010)

    Article  Google Scholar 

  8. Emerson, R.W., Kim, D.S., Naghshineh, K.: Blind pedestrians and the impact of quieter vehicles on mobility decisions. In: Internoise 2013, Innsbruck (2013)

    Google Scholar 

  9. Evans, L.: Automobile-speed estimation using movie-film simulation. Ergonomics 13(2), 231–237 (1970)

    Article  Google Scholar 

  10. Garay-Vega, L., Pollard, J.K., Guthy, C., Hastings, A.: Auditory detectability of hybrid electric vehicles by blind pedestrians. Transp. Res. Rec. J. Transp. Res. Board 2248(1), 68–73 (2011)

    Article  Google Scholar 

  11. Horswill, M.S., Plooy, A.M.: Auditory feedback influences perceived driving speeds. Perception 37(7), 1037 (2008)

    Article  Google Scholar 

  12. Merer, A., Aramaki, M., Ystad, S., Kronland-Martinet, R.: Perceptual characterization of motion evoked by sounds for synthesis control purposes. Assoc. Comput. Mach. Trans. Appl. Percept. (TAP) 10(1), 1–24 (2013)

    Google Scholar 

  13. Miloševic, S., Milic, J.: Speed perception in road curves. J. Saf. Res. 21(1), 19–23 (1990)

    Article  Google Scholar 

  14. Parseihian, G., Gondre, C., Aramaki, M., Ystad, S., Kronland-Martinet, R.: Comparison and evaluation of sonification strategies for guidance tasks. IEEE Trans. Multimedia 18(4), 674–686 (2016). https://doi.org/10.1109/TMM.2016.2531978, ISSN: 1520–9210

  15. Penrose, L.S., Penrose, R.: Impossible objects: a special type of visual illusion. Brit. J. Psychol. 49, 31–33 (1958)

    Article  Google Scholar 

  16. Recarte, M.A., Nunes, L.M.: Perception of speed in an automobile: Estimation and production. J. Exp. Psychol. Appl. 2(4), 291 (1996)

    Article  Google Scholar 

  17. Recarte, M.A., Conchillo, A. and Nunes, L.: Traffic and transport psychocology. In: Perception of Speed and Increments in Cars, pp. 73–84. Elsevier (2004)

    Google Scholar 

  18. Risset, J.C.: Pich control and pitch paradoxes demonstrated with computer-synthesized sounds. J. Acoust. Soc. Am. 46, 88 (1969)

    Article  Google Scholar 

  19. Risset, J.C.: Paradoxes de hauteur. Technical report, IRCAM, 1978 (1978). https://articles.ircam.fr/textes/Risset78a/

  20. Rozé, J., Aramaki, M., Kronland-Martinet, R., Ystad, S.: Assessing the effects of a primary control impairment on the cellists’ bowing gesture inducing harsh sounds. IEEE Access 6, 43683–43695 (2018). https://doi.org/10.1109/ACCESS.2018.2856178

    Article  Google Scholar 

  21. Salvatore, S.: Estimation of vehicular velocity under time limitation and restricted conditions of observation. Technical report, Transportation Research Board (1967)

    Google Scholar 

  22. Sciabica, J.F., Bezat, M.C., Roussarie, V., Kronland-Martinet, R., Ystad, S.: Timbre Characteristics of Interior Car Sound, Auditory Display, pp. 377–391. Springer, Heidelberg (2010)

    Google Scholar 

  23. Shepard, R.N.: Circularity in judgments of relative pitch. J. Acoust. Soc. Am. 36(12), 2346–2353 (1964)

    Article  Google Scholar 

  24. Thoret, E., Aramaki, M., Bringoux, L., Ystad, S., Kronland-Martinet, R.: Seeing circles and drawing ellipses: when sound biases reproduction of visual motion. PLoS ONE 11(4), e0154475 (2016). https://doi.org/10.1371/journal.pone.0154475

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the French National Research Agency (ANR-10-CORD-0003, MetaSon, “Métaphores sonores”, https://metason.prism.cnrs.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Denjean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denjean, S., Kronland-Martinet, R., Roussarie, V., Ystad, S. (2021). Zero-Emission Vehicles Sonification Strategy Based on Shepard-Risset Glissando. In: Kronland-Martinet, R., Ystad, S., Aramaki, M. (eds) Perception, Representations, Image, Sound, Music. CMMR 2019. Lecture Notes in Computer Science(), vol 12631. Springer, Cham. https://doi.org/10.1007/978-3-030-70210-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70210-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70209-0

  • Online ISBN: 978-3-030-70210-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics