Skip to main content

Gene Therapy in Cellular Immunodeficiencies

  • Chapter
  • First Online:
Cellular Primary Immunodeficiencies

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

The treatment of cellular primary immunodeficiencies has benefitted from significant advances in the field of allogeneic stem cell transplantation (alloHSCT). However, while this therapy is curative for many PIDs, the procedure requires a suitably matched donor and carries significant risks of morbidity and mortality from complications such as graft-versus-host disease (GVHD). Autologous gene therapy (GT) approaches using stem cells isolated from patients and modified ex vivo using viral vectors or gene editing techniques have the potential to offer curative therapy for PID without the immunological complications of alloHSCT. GT for PID has been developed over the last 30 years, and while several setbacks have been encountered along the way, there is now a licensed GT product for ADA-SCID, and promising results from phase I/II clinical trials have demonstrated that GT may offer clinical efficacy comparable to alloHSCT in several other PIDs. Developments in the field are broadening the application of GT, and we expect that this therapeutic modality may become standard of care for the management of several PIDs in the near future. This chapter explores the development of GT over the last 30 years and outlines its role in the management of cellular primary immunodeficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slatter MA, Gennery AR (2018) Hematopoietic cell transplantation in primary immunodeficiency—conventional and emerging indications. Expert Rev Clin Immunol 14(2):103–114

    Article  CAS  PubMed  Google Scholar 

  2. Gennery AR, Lankester A (2019) Inborn errors working party of the European Society for B, Marrow T. Long term outcome and immune function after hematopoietic stem cell transplantation for primary immunodeficiency. Front Pediatr 7:381

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCurdy SR, Kasamon YL, Kanakry CG, Bolanos-Meade J, Tsai HL, Showel MM et al (2017) Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica 102(2):391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCurdy SR, Luznik L (2019) How we perform haploidentical stem cell transplantation with posttransplant cyclophosphamide. Blood 134(21):1802–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L et al (2015) Single-center experience of unrelated and haploidentical stem cell transplantation with TCR alphabeta and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant 21(11):1955–1962

    Article  PubMed  Google Scholar 

  6. Morris EC, Albert MH (2019) Allogeneic HSCT in adolescents and young adults with primary immunodeficiencies. Front Pediatr 7:437

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fox TA, Chakraverty R, Burns S, Carpenter B, Thomson K, Lowe D et al (2018) Successful outcome following allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency. Blood 131(8):917–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Booth C, Gaspar HB, Thrasher AJ (2016) Treating immunodeficiency through HSC gene therapy. Trends Mol Med 22(4):317–327

    Article  CAS  PubMed  Google Scholar 

  9. Naldini L (2019) Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 11(3):e9958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341(6148):1233151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. De Ravin SS, Wu X, Moir S, Anaya-O’Brien S, Kwatemaa N, Littel P et al (2016) Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 8(335):335ra57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kohn DB, Booth C, Kang EM, Pai SY, Shaw KL, Santilli G et al (2020) Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med 26(2):200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fares I, Chagraoui J, Lehnertz B, MacRae T, Mayotte N, Tomellini E et al (2017) EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood 129(25):3344–3351

    Article  CAS  PubMed  Google Scholar 

  14. Radtke S, Adair JE, Giese MA, Chan YY, Norgaard ZK, Enstrom M et al (2017) A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Sci Transl Med 9(414):eaan1145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296(5577):2410–2413

    Article  CAS  PubMed  Google Scholar 

  16. Morgan RA, Gray D, Lomova A, Kohn DB (2017) Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21(5):574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    Article  CAS  PubMed  Google Scholar 

  18. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40(1):24–64

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whitmore KV, Gaspar HB (2016) Adenosine deaminase deficiency—more than just an immunodeficiency. Front Immunol 7:314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270(5235):475–480

    Article  CAS  PubMed  Google Scholar 

  21. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P et al (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 270(5235):470–475

    Article  CAS  PubMed  Google Scholar 

  22. Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J et al (2006) Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 14(4):505–513

    Article  CAS  PubMed  Google Scholar 

  23. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Touzot F, Moshous D, Creidy R, Neven B, Frange P, Cros G et al (2015) Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood 125(23):3563–3569

    Article  CAS  PubMed  Google Scholar 

  26. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M et al (2014) Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med 6(227):227ra33

    Article  PubMed  CAS  Google Scholar 

  27. Braun CJ, Witzel M, Paruzynski A, Boztug K, von Kalle C, Schmidt M et al (2014) Gene therapy for Wiskott-Aldrich Syndrome-Long-term reconstitution and clinical benefits, but increased risk for leukemogenesis. Rare Dis 2(1):e947749

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16(2):198–204

    Article  CAS  PubMed  Google Scholar 

  29. Brendel C, Muller-Kuller U, Schultze-Strasser S, Stein S, Chen-Wichmann L, Krattenmacher A et al (2012) Physiological regulation of transgene expression by a lentiviral vector containing the A2UCOE linked to a myeloid promoter. Gene Ther 19(10):1018–1029

    Article  CAS  PubMed  Google Scholar 

  30. Brendel C, Hanseler W, Wohlgensinger V, Bianchi M, Tokmak S, Chen-Wichmann L et al (2013) Human miR223 promoter as a novel myelo-specific promoter for chronic granulomatous disease gene therapy. Hum Gene Ther Methods 24(3):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aiuti A, Brigida I, Ferrua F, Cappelli B, Chiesa R, Marktel S et al (2009) Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID. Immunol Res 44(1–3):150–159

    Article  PubMed  Google Scholar 

  32. Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S et al (2014) A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 371(15):1407–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ et al (2011) Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 3(97):97ra79

    PubMed  Google Scholar 

  34. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 17(11):1919–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al (2011) Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117(20):5332–5339

    Article  CAS  PubMed  Google Scholar 

  37. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12(5):2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barquinero J, Segovia JC, Ramirez M, Limon A, Guenechea G, Puig T et al (2000) Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 95(10):3085–3093

    Article  CAS  PubMed  Google Scholar 

  41. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ (1996) Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87(1):30–37

    Article  CAS  PubMed  Google Scholar 

  42. Sutton RE, Reitsma MJ, Uchida N, Brown PO (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73(5):3649–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Millington M, Arndt A, Boyd M, Applegate T, Shen S (2009) Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells. PLoS One 4(7):e6461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pai SY (2019) Treatment of primary immunodeficiency with allogeneic transplant and gene therapy. Hematol Am Soc Hematol Educ Program 2019(1):457–465

    Article  Google Scholar 

  45. Aiuti A, Roncarolo MG, Naldini L (2017) Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 9(6):737–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoggatt J (2016) Gene therapy for "Bubble Boy" disease. Cell 166(2):263

    Article  CAS  PubMed  Google Scholar 

  47. Morris EC, Fox T, Chakraverty R, Tendeiro R, Snell K, Rivat C et al (2017) Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 130(11):1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pai SY, Cowan MJ (2014) Stem cell transplantation for primary immunodeficiency diseases: the North American experience. Curr Opin Allergy Clin Immunol 14(6):521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrua F, Aiuti A (2017) Twenty-five years of gene therapy for ADA-SCID: from bubble babies to an approved drug. Hum Gene Ther 28(11):972–981

    Article  CAS  PubMed  Google Scholar 

  50. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360(5):447–458

    Article  CAS  PubMed  Google Scholar 

  51. Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C et al (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120(18):3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carbonaro DA, Jin X, Wang X, Yu XJ, Rozengurt N, Kaufman ML et al (2012) Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction. Blood 120(18):3677–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuo CY, Kohn DB (2016) Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep 16(5):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G et al (2019) Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med 380(16):1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lagresle-Peyrou C, Benjelloun F, Hue C, Andre-Schmutz I, Bonhomme D, Forveille M et al (2008) Restoration of human B-cell differentiation into NOD-SCID mice engrafted with gene-corrected CD34+ cells isolated from Artemis or RAG1-deficient patients. Mol Ther 16(2):396–403

    Article  CAS  PubMed  Google Scholar 

  56. Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F et al (2014) A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 134(6):1375–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benjelloun F, Garrigue A, Demerens-de Chappedelaine C, Soulas-Sprauel P, Malassis-Seris M, Stockholm D et al (2008) Stable and functional lymphoid reconstitution in artemis-deficient mice following lentiviral artemis gene transfer into hematopoietic stem cells. Mol Ther 16(8):1490–1499

    Article  CAS  PubMed  Google Scholar 

  58. Punwani D, Kawahara M, Yu J, Sanford U, Roy S, Patel K et al (2017) Lentivirus mediated correction of artemis-deficient severe combined immunodeficiency. Hum Gene Ther 28(1):112–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Multhaup MM, Podetz-Pedersen KM, Karlen AD, Olson ER, Gunther R, Somia NV et al (2015) Role of transgene regulation in ex vivo lentiviral correction of artemis deficiency. Hum Gene Ther 26(4):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lagresle-Peyrou C, Yates F, Malassis-Seris M, Hue C, Morillon E, Garrigue A et al (2006) Long-term immune reconstitution in RAG-1-deficient mice treated by retroviral gene therapy: a balance between efficiency and toxicity. Blood 107(1):63–72

    Article  CAS  PubMed  Google Scholar 

  61. Pike-Overzet K, Rodijk M, Ng YY, Baert MR, Lagresle-Peyrou C, Schambach A et al (2011) Correction of murine Rag1 deficiency by self-inactivating lentiviral vector-mediated gene transfer. Leukemia 25(9):1471–1483

    Article  CAS  PubMed  Google Scholar 

  62. van Til NP, Sarwari R, Visser TP, Hauer J, Lagresle-Peyrou C, van der Velden G et al (2014) Recombination-activating gene 1 (Rag1)-deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome. J Allergy Clin Immunol 133(4):1116–1123

    Article  PubMed  CAS  Google Scholar 

  63. Garcia-Perez L, van Eggermond M, van Roon L, Vloemans SA, Cordes M, Schambach A et al (2020) Successful preclinical development of gene therapy for recombinase-activating gene-1-deficient SCID. Mol Ther Methods Clin Dev 17:666–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thrasher AJ, Williams DA (2017) Evolving gene therapy in primary immunodeficiency. Mol Ther 25(5):1132–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI et al (2001) Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 344(12):881–888

    Article  CAS  PubMed  Google Scholar 

  66. Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D et al (2014) Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet 383(9915):436–448

    Article  CAS  PubMed  Google Scholar 

  67. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ et al (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 94(22):12133–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malech HL, Choi U, Brenner S (2004) Progress toward effective gene therapy for chronic granulomatous disease. Jpn J Infect Dis 57(5):S27–S28

    PubMed  Google Scholar 

  69. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4):401–409

    Article  CAS  PubMed  Google Scholar 

  70. Kang EM, Choi U, Theobald N, Linton G, Long Priel DA, Kuhns D et al (2010) Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 115(4):783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Santilli G, Almarza E, Brendel C, Choi U, Beilin C, Blundell MP et al (2011) Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells. Mol Ther 19(1):122–132

    Article  CAS  PubMed  Google Scholar 

  72. Brendel C, Rothe M, Santilli G, Charrier S, Stein S, Kunkel H et al (2018) Non-clinical efficacy and safety studies on G1XCGD, a lentiviral vector for ex vivo gene therapy of X-linked chronic granulomatous disease. Hum Gene Ther Clin Dev 29(2):69–79

    Article  CAS  PubMed  Google Scholar 

  73. Liese JG, Jendrossek V, Jansson A, Petropoulou T, Kloos S, Gahr M et al (1996) Chronic granulomatous disease in adults. Lancet 347(8996):220–223

    Article  CAS  PubMed  Google Scholar 

  74. Liese J, Kloos S, Jendrossek V, Petropoulou T, Wintergerst U, Notheis G et al (2000) Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. J Pediatr 137(5):687–693

    Article  CAS  PubMed  Google Scholar 

  75. Ochs HD, Thrasher AJ (2006) The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 117(4):725–738. quiz 39

    Article  CAS  PubMed  Google Scholar 

  76. Dupre L, Trifari S, Follenzi A, Marangoni F, Lain de Lera T, Bernad A et al (2004) Lentiviral vector-mediated gene transfer in T cells from Wiskott-Aldrich syndrome patients leads to functional correction. Mol Ther 10(5):903–915

    Article  CAS  PubMed  Google Scholar 

  77. Ferrua F, Cicalese MP, Galimberti S, Giannelli S, Dionisio F, Barzaghi F et al (2019) Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol 6(5):e239–ee53

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K et al (2015) Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA 313(15):1550–1563

    Article  PubMed  CAS  Google Scholar 

  79. Bauer TR Jr, Hickstein DD (2000) Gene therapy for leukocyte adhesion deficiency. Curr Opin Mol Ther 2(4):383–388

    CAS  PubMed  Google Scholar 

  80. Leon-Rico D, Aldea M, Sanchez-Baltasar R, Mesa-Nunez C, Record J, Burns SO et al (2016) Lentiviral vector-mediated correction of a mouse model of leukocyte adhesion deficiency type I. Hum Gene Ther 27(9):668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hunter MJ, Tuschong LM, Fowler CJ, Bauer TR Jr, Burkholder TH, Hickstein DD (2011) Gene therapy of canine leukocyte adhesion deficiency using lentiviral vectors with human CD11b and CD18 promoters driving canine CD18 expression. Mol Ther 19(1):113–121

    Article  CAS  PubMed  Google Scholar 

  82. Yates F, Malassis-Seris M, Stockholm D, Bouneaud C, Larousserie F, Noguiez-Hellin P et al (2002) Gene therapy of RAG-2−/− mice: sustained correction of the immunodeficiency. Blood 100(12):3942–3949

    Article  CAS  PubMed  Google Scholar 

  83. van Til NP, de Boer H, Mashamba N, Wabik A, Huston M, Visser TP et al (2012) Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene. Mol Ther 20(10):1968–1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Capo V, Castiello MC, Fontana E, Penna S, Bosticardo M, Draghici E et al (2018) Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation. J Allergy Clin Immunol 142(3):928–941. e8

    Article  CAS  PubMed  Google Scholar 

  85. Barzaghi F, Amaya Hernandez LC, Neven B, Ricci S, Kucuk ZY, Bleesing JJ et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049. e5

    Article  PubMed  Google Scholar 

  86. Passerini L, Rossi Mel E, Sartirana C, Fousteri G, Bondanza A, Naldini L et al (2013) CD4(+) T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer. Sci Transl Med 5(215):215ra174

    Article  PubMed  CAS  Google Scholar 

  87. Riley JL, June CH, Blazar BR (2009) Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30(5):656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Masiuk KE, Laborada J, Roncarolo MG, Hollis RP, Kohn DB (2019) Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome. Cell Stem Cell 24(2):309–317. e7

    Article  CAS  PubMed  Google Scholar 

  89. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ghosh S, Carmo M, Calero-Garcia M, Ricciardelli I, Bustamante Ogando JC, Blundell MP et al (2018) T-cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents hemophagocytic lymphohistiocytosis manifestations. J Allergy Clin Immunol 142(3):904–913. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carmo M, Risma KA, Arumugam P, Tiwari S, Hontz AE, Montiel-Equihua CA et al (2015) Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency. Mol Ther 23(4):737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R et al (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192(3):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H et al (2011) X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 117(1):53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Panchal N, Houghton B, Diez B, Ghosh S, Ricciardelli I, Thrasher AJ et al (2018) Transfer of gene-corrected T cells corrects humoral and cytotoxic defects in patients with X-linked lymphoproliferative disease. J Allergy Clin Immunol 142(1):235–245. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kohn DB, Kuo CY (2017) New frontiers in the therapy of primary immunodeficiency: from gene addition to gene editing. J Allergy Clin Immunol 139(3):726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Porteus MH (2019) A New Class of Medicines through DNA Editing. N Engl J Med 380(10):947–959

    Article  CAS  PubMed  Google Scholar 

  98. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P (2019) Target-specific precision of CRISPR-mediated genome editing. Mol Cell 73(4):699–713. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuo CY, Long JD, Campo-Fernandez B, de Oliveira S, Cooper AR, Romero Z et al (2018) Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep 23(9):2606–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hirsch ML, Samulski RJ (2014) AAV-mediated gene editing via double-strand break repair. Methods Mol Biol 1114:291–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hubbard N, Hagin D, Sommer K, Song Y, Khan I, Clough C et al (2016) Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood 127(21):2513–2522

    Article  CAS  PubMed  Google Scholar 

  104. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K et al (1997) Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71(10):7951–7959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bak RO, Dever DP, Porteus MH (2018) CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc 13(2):358–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khan IF, Hirata RK, Russell DW (2011) AAV-mediated gene targeting methods for human cells. Nat Protoc 6(4):482–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Joglekar AV, Hollis RP, Kuftinec G, Senadheera S, Chan R, Kohn DB (2013) Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol Ther 21(9):1705–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–1306

    Article  CAS  PubMed  Google Scholar 

  111. De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S et al (2017) CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 9:372

    Article  CAS  Google Scholar 

  112. Goodwin M, Lee E, Lakshmanan U, Shipp S, Froessl L, Barzaghi F et al (2020) CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci Adv 6(19):eaaz0571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clough Cea ASGCT (2016) 19th Annual meeting: abstracts. Mol Ther 24(Suppl 1):S1–S304

    Google Scholar 

  114. Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10(1):1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sacco MG, Ungari M, Cato EM, Villa A, Strina D, Notarangelo LD et al (2000) Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. Cancer Gene Ther 7(10):1299–1306

    Article  CAS  PubMed  Google Scholar 

  116. Sather BD, Ryu BY, Stirling BV, Garibov M, Kerns HM, Humblet-Baron S et al (2011) Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders. Mol Ther 19(3):515–525

    Article  CAS  PubMed  Google Scholar 

  117. Yu PW, Tabuchi RS, Kato RM, Astrakhan A, Humblet-Baron S, Kipp K et al (2004) Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 104(5):1281–1290

    Article  CAS  PubMed  Google Scholar 

  118. Brunet E, Jasin M (2018) Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol 1044:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364(6437):286–289

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  122. Morgens DW, Wainberg M, Boyle EA, Ursu O, Araya CL, Tsui CK et al (2017) Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat Commun 8:15178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683

    Article  CAS  PubMed  Google Scholar 

  124. Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ et al (2016) Milestones of hematopoietic stem cell transplantation—from first human studies to current developments. Front Immunol 7:470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes DB, Tate TA et al (2016) Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 34(7):738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Czechowicz A, Kraft D, Weissman IL, Bhattacharya D (2007) Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318(5854):1296–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Czechowicz A, Palchaudhuri R, Scheck A, Hu Y, Hoggatt J, Saez B et al (2019) Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat Commun 10(1):617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chhabra A, Ring AM, Weiskopf K, Schnorr PJ, Gordon S, Le AC et al (2016) Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med 8(351):351ra105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kwon HS, Logan AC, Chhabra A, Pang WW, Czechowicz A, Tate K et al (2019) Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood 133(19):2104–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Agarwal R, Dvorak CC, Kwon HS, Long-Boyle JR, Prohaska SS, Brown JW, Le A, Guttman-Klein A, Weissman IL, Cowan MJ, Logan AC, Weinberg KI, Parkman R, Roncarolo M-G, Shizuru JA (2019) Non-genotoxic anti-CD117 antibody conditioning results in successful hematopoietic stem cell engraftment in patients with severe combined immunodeficiency. Blood 134(Suppl. 1):800

    Article  Google Scholar 

  131. Morgenstern DA, Ahsan G, Brocklesby M, Ings S, Balsa C, Veys P et al (2016) Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: important implications for quality assurance of stem cell transplant programmes. Br J Haematol 174(6):942–951

    Article  CAS  PubMed  Google Scholar 

  132. Valkama AJ, Leinonen HM, Lipponen EM, Turkki V, Malinen J, Heikura T et al (2018) Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther 25(1):39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bauler M, Roberts JK, Wu CC, Fan B, Ferrara F, Yip BH et al (2020) Production of lentiviral vectors using suspension cells grown in serum-free media. Mol Ther Methods Clin Dev 17:58–68

    Article  CAS  PubMed  Google Scholar 

  134. Tajer P, Pike-Overzet K, Arias S, Havenga M, Staal FJT (2019) Ex vivo expansion of hematopoietic stem cells for therapeutic purposes: lessons from development and the Niche. Cell 8(2):169

    Article  CAS  Google Scholar 

  135. Masiuk KE, Zhang R, Osborne K, Hollis RP, Campo-Fernandez B, Kohn DB (2019) PGE2 and Poloxamer Synperonic F108 enhance transduction of human HSPCs with a beta-globin lentiviral vector. Mol Ther Methods Clin Dev. 13:390–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AMS, Piras F et al (2018) Cyclosporine H overcomes innate immune restrictions to improve lentiviral transduction and gene editing in human hematopoietic stem cells. Cell Stem Cell 23(6):820–832. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma C. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fox, T., Booth, C., Morris, E.C. (2021). Gene Therapy in Cellular Immunodeficiencies. In: D'Elios, M.M., Baldari, C.T., Annunziato, F. (eds) Cellular Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-70107-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70107-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70106-2

  • Online ISBN: 978-3-030-70107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics