Skip to main content

The Role of Surfactants in Gas Hydrate Management

  • Chapter
  • First Online:
Surfactants in Upstream E&P

Part of the book series: Petroleum Engineering ((PEEN))

  • 744 Accesses

Abstract

This chapter provides an introductory understanding of the role of surfactants in the formation of gas hydrates. The main theories that have been developed over the past decades are discussed with support from computational aspects that have become increasingly useful in this regard. Particularly for surfactants, the structure-property relations are key in the full understanding of their behavior in the context of hydrate formation kinetics and equilibria, which are presented with evidence from various studies. Furthermore, surfactants can benefit from co-promoters that may be utilized in hydrate formation, so we present some details to highlight the importance of their interactions. More recently, bio-based surfactants have gained interest out of environmental concerns, and we showcase some of the most interesting cases of their implementation. Although there have been many examples of how gas hydrates can be used for cold storage, hydrogen storage, and other industrial applications, the usage of surfactants or other additives has not been well supported with clear fundamental understandings. Thus, there have been endeavors to gain these insights via computational tools that span different scales, like quantum mechanics and molecular dynamic simulations. The use of these tools is explained with examples. Combining all these different aspects, we hope to provide some understanding of the role of surfactants in current and emerging hydrate management technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sloan ED, Koh CA, Koh C (2007) Clathrate hydrates of natural gases, 3rd edn, CRC Press

    Google Scholar 

  2. Koh CA (2002) Towards a fundamental understanding of natural gas hydrates. Chem Soc Rev 31:157–167

    Article  Google Scholar 

  3. Makogon YF (2010) Natural gas hydrates—a promising source of energy. J Nat Gas Sci Eng

    Google Scholar 

  4. Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215

    Article  Google Scholar 

  5. Shina K, Kumarb R, Udachina KA, Alavia S, Ripmeester JA (2012) Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, andother planetary systems. Proc Natl Acad Sci USA 109:14785–14790

    Article  Google Scholar 

  6. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855

    Article  Google Scholar 

  7. Jamaluddin AKM, Kalogerakis N, Bishnoi PR (1991) Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions. J Pet Sci Eng 5:323–335

    Article  Google Scholar 

  8. Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuels 20:825–847

    Article  Google Scholar 

  9. Chua PC, Kelland MA (2018) Study of the gas hydrate antiagglomerant performance of a series of mono-and bis-amine oxides: dual antiagglomerant and kinetic hydrate inhibition behavior. Energy Fuels 32:1674–1684

    Article  Google Scholar 

  10. Englezos P, Lee JD (2005) Gas hydrates: a cleaner source of energy and opportunity for innovative technologies. Korean J Chem Eng 22:671–681

    Article  Google Scholar 

  11. Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P (2018) A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl Energy 216:262–282

    Article  Google Scholar 

  12. Veluswamy HP, Kumar R, Linga P (2014) Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl Energy 122:112–132

    Article  Google Scholar 

  13. Dashti H, Yew LZ, Lou X Recent advances in gas hydrate-based CO2 capture.pdf

    Google Scholar 

  14. Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279

    Article  Google Scholar 

  15. Li A, Wang J, Bao B (2019) High-efficiency CO2 capture and separation based on hydrate technology: a review. Greenh Gases Sci Technol 9:175–193

    Article  Google Scholar 

  16. Babu P, Nambiar A, He T, Karimi IA, Lee JD, Englezos P, Linga P (2018) A review of clathrate hydrate based desalination to strengthen energy-water nexus. ACS Sustain Chem Eng 6:8093–8107

    Article  Google Scholar 

  17. Gayet P, Dicharry C, Marion G, Graciaa A, Lachaise J, Nesterov A (2005) Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter 60:5751–5758

    Google Scholar 

  18. Kalogerakis N, Jamaluddin AKM, Dholabhai PD, Bishnoi PR (1993) Effect of surfactants on hydrate formation kinetics. In: Proceedings of the proceedings of the 1993 spe international symposium on oilfield chemistry, Society of Petroleum Engineers 1:375–383

    Google Scholar 

  19. Kumar A, Bhattacharjee G, Kulkarni BD, Kumar R (2015) Role of surfactants in promoting gas hydrate formation. Ind Eng Chem Res 54:12217–12232

    Article  Google Scholar 

  20. Pandey JS, Daas YJ, Solms N (2020) Von screening of amino acids and surfactant as hydrate promoter for CO2 capture from flue gas

    Google Scholar 

  21. Kvamme B, Selvåg J, Saeidi N, Kuznetsova T (2018) Methanol as a hydrate inhibitor and hydrate activator. Phys Chem Chem Phys 20:21968–21987

    Article  Google Scholar 

  22. Linga P, Clarke MA (2017) A review of reactor designs and materials employed for increasing the rate of gas hydrate formation. Energy Fuels 31:1–13

    Article  Google Scholar 

  23. Kumar A, Sakpal T, Linga P, Kumar R (2015) Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing. Chem Eng Sci 122:78–85

    Article  Google Scholar 

  24. Lim YA, Babu P, Kumar R, Linga P (2013) Morphology of carbon dioxide-hydrogen-cyclopentane hydrates with or without sodium dodecyl sulfate. Cryst Growth Des 13:2047–2059

    Article  Google Scholar 

  25. Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H (2014) Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study. J Phys Chem B 118:1900–1906

    Article  Google Scholar 

  26. Zhang JS, Lee S, Lee JW (2007) Kinetics of methane hydrate formation from sds solution, pp 6353–6359

    Google Scholar 

  27. Zhang J, Lee JW (2009) Effect of sodium dodecyl sulfate on the supercooling point of ice and clathrate hydrates. Energy Fuels 23:3045–3047

    Article  Google Scholar 

  28. Zhong Y, Rogers RE (2000) Surfactant effects on gas hydrate formation. Chem Eng Sci 55:4175–4187

    Article  Google Scholar 

  29. World THE, Surface OF The world of surface science *, pp 14–24

    Google Scholar 

  30. Fuhrhop JH, Koning J (1994) Membranes and molecular assemblies, Monographs in supramolecular chemistry, The Royal Society of Chemistry, ISBN 978-0-85186-732-8

    Google Scholar 

  31. He Y, Sun M-T, Chen C, Zhang G-D, Chao K, Lin Y, Wang F (2019) Surfactant-based promotion to gas hydrate formation for energy storage. J Mater Chem A 7:21634–21661

    Article  Google Scholar 

  32. Karaaslan U, Parlaktuna M (2002) Promotion effect of polymers and surfactants on hydrate formation rate. Energy Fuels 16:1413–1416

    Article  Google Scholar 

  33. Karaaslan U, Parlaktuna M (2000) Surfactants as hydrate promoters? Energy Fuels 14:1103–1107

    Article  Google Scholar 

  34. Okutani K, Kuwabara Y, Mori YH (2008) Surfactant effects on hydrate formation in an unstirred gas / liquid system : an experimental study using methane and sodium alkyl sulfates 63:183–194

    Google Scholar 

  35. Kumar A, Sakpal T, Linga P, Kumar R (2013) Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics. Fuel 105:664–671

    Article  Google Scholar 

  36. Veluswamy HP, Ang WJ, Zhao D, Linga P (2015) In fl uence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen / tetrahydrofuran hydrates. Chem Eng Sci 132:186–199

    Article  Google Scholar 

  37. Rogers RE, Kothapalli C, Lee MS, Woolsey JR (2008) Catalysis of Gas Hydrates by Biosurfactants in Seawater-Saturated Sand/Clay. Can J Chem Eng 81:973–980

    Article  Google Scholar 

  38. Arora A, Cameotra SS, Kumar R, Balomajumder C, Singh AK, Santhakumari B, Kumar P, Laik S (2016) Biosurfactant as a promoter of methane hydrate formation: thermodynamic and kinetic studies. Sci Rep 6:1–13

    Article  Google Scholar 

  39. Rogers R, Zhang G, Dearman J, Woods C (2007) Investigations into surfactant/gas hydrate relationship. J Pet Sci Eng 56:82–88

    Article  Google Scholar 

  40. Barakat Y, Fortney LN, Schechter RS, Wade WH, Yiv SH, Graciaa A (1983) Criteria for structuring surfactants to maximize solubilization of oil and water. II. Alkyl benzene sodium sulfonates. J Colloid Interface Sci 92:561–574

    Article  Google Scholar 

  41. Kunieda H, Shinoda K (1982) Correlation between critical solution phenomena and ultralow interfacial tensions in a surfactant/water/oil system. Chem Soc Japan 55:1777–1781

    Article  Google Scholar 

  42. Daimaru T, Yamasaki A, Yanagisawa Y (2007) Effect of surfactant carbon chain length on hydrate formation kinetics. J Pet Sci Eng 56:89–96

    Article  Google Scholar 

  43. Dicharry C, Diaz J, Torré JP, Ricaurte M (2016) Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2–CH4 gas hydrates. Chem Eng Sci 152:736–745

    Article  Google Scholar 

  44. Roy S, Mehra A, Bhowmick D (1997) Prediction of solubility of nonpola—gases in micellar solutions of ionic surfactants. J Colloid Interface Sci 196:53–61

    Article  Google Scholar 

  45. Luo H, Sun CY, Peng BZ, Chen GJ (2006) Solubility of ethylene in aqueous solution of sodium dodecyl sulfate at ambient temperature and near the hydrate formation region. J Colloid Interface Sci 298:952–956

    Article  Google Scholar 

  46. Peng BZ, Chen GJ, Luo H, Sun CY (2006) Solubility measurement of methane in aqueous solution of sodium dodecyl sulfate at ambient temperature and near hydrate conditions. J Colloid Interface Sci 304:558–561

    Article  Google Scholar 

  47. Pandey JS, Daas YJ, Solms N (2019) Von insights into kinetics of methane hydrate formation in the presence of surfactants

    Google Scholar 

  48. Di Profio P, Arca S, Germani R, Savelli G (2005) Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci 60:4141–4145

    Article  Google Scholar 

  49. Zhang JS, Lee S, Lee JW (2007) Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point? J Colloid Interface Sci 315:313–318

    Article  Google Scholar 

  50. Albertí M, Costantini A, Laganá A, Pirani F (2012) Are micelles needed to form methane hydrates in sodium dodecyl sulfate solutions? J Phys Chem B 116:4220–4227

    Article  Google Scholar 

  51. Kobayashi I, Ito Y, Mori YH (2001) Microscopic observations of clathrate-hydrate films formed at liquid/liquid interfaces. I. Morphology of hydrate films. Chem Eng Sci 56:4331–4338

    Article  Google Scholar 

  52. Watanabe K, Imai S, Mori YH (2005) Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using HFC-32 and sodium dodecyl sulfate. Chem Eng Sci 60:4846–4857

    Article  Google Scholar 

  53. Yoslim J, Linga P, Englezos P (2010) Enhanced growth of methane—propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. J Cryst Growth 313:68–80

    Article  Google Scholar 

  54. Karanjkar PU, Lee JW, Morris JF (2012) Surfactant effects on hydrate crystallization at the water-oil interface: hollow-conical crystals. Cryst Growth Des 12:3817–3824

    Article  Google Scholar 

  55. Tajima H, Kiyono F, Yamasaki A (2010) Direct observation of the effect of sodium dodecyl sulfate (SDS) on the gas hydrate formation process in a static mixer. Energy Fuels 24:432–438

    Article  Google Scholar 

  56. Mitarai M, Kishimoto M, Suh D, Ohmura R (2015) Surfactant effects on the crystal growth of clathrate hydrate at the interface of water and hydrophobic-guest liquid. Cryst Growth Des 15:812–821

    Article  Google Scholar 

  57. Hayama H, Mitarai M, Mori H, Verrett J, Servio P, Ohmura R (2016) Surfactant Effects on Crystal Growth Dynamics and Crystal Morphology of Methane Hydrate Formed at Gas/Liquid Interface. Cryst Growth Des 16:6084–6088

    Article  Google Scholar 

  58. Hayama H, Mitarai M, Mori H, Ohmura R (2016) Methane hydrate crystal growth at the gas/liquid interface in the presence of sodium dodecyl sulfate. Procedia Eng 148:339–345

    Article  Google Scholar 

  59. Wang F, Wang L, Wang C, Guo G, Liu G, Luo S, Guo R (2015) Direction controlled methane hydrate growth. Cryst Growth Des 15:5112–5117

    Article  Google Scholar 

  60. Wang F, Jia ZZ, Luo SJ, Fu SF, Wang L, Shi XS, Wang CS, Guo RB (2015) Effects of different anionic surfactants on methane hydrate formation. Chem Eng Sci 137:896–903

    Article  Google Scholar 

  61. Botimer JD, Dunn-Rankin D, Taborek P (2016) Evidence for immobile transitional state of water in methane clathrate hydrates grown from surfactant solutions. Chem Eng Sci 142:89–96

    Article  Google Scholar 

  62. Molokitina NS, Nesterov AN, Podenko LS, Reshetnikov AM (2019) Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel 235:1400–1411

    Article  Google Scholar 

  63. Ando N, Kuwabara Y, Mori YH (2012) Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using methane and micelle-forming surfactants. Chem Eng Sci 73:79–85

    Article  Google Scholar 

  64. Wang F, Liu GQ, Meng HL, Guo G, Luo SJ, Guo RB (2016) Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters. ACS Sustain Chem Eng 4:2107–2113

    Article  Google Scholar 

  65. Daniel-David D, Guerton F, Dicharry C, Torré JP, Broseta D (2015) Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants. Chem Eng Sci 132:118–127

    Article  Google Scholar 

  66. Zhang JS, Lo C, Somasundaran P, Lu S, Couzis A, Lee JW (2008) Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface. J Phys Chem C 112:12381–12385

    Article  Google Scholar 

  67. Zhang JS, Lo C, Somasundaran P, Lee JW (2010) Competitive adsorption between SDS and carbonate on tetrahydrofuran hydrates. J Colloid Interface Sci 341:286–288

    Article  Google Scholar 

  68. Lo C, Zhang JS, Couzis A, Somasundaran P, Lee JW (2010) Adsorption of cationic and anionic surfactants on cyclopentane hydrates. J Phys Chem C 114:13385–13389

    Article  Google Scholar 

  69. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48

    Article  Google Scholar 

  70. Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. I: Isomerically pure anionic surfactants. J Colloid Interface Sci 85:463–478

    Article  Google Scholar 

  71. Somasundaran P, Fuerstenau DW (1966) Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J Phys Chem 70:90–96

    Article  Google Scholar 

  72. Zerpa LE, Salager JL, Koh CA, Sloan ED, Sum AK (2011) Surface chemistry and gas hydrates in flow assurance. Ind Eng Chem Res 50:188–197

    Article  Google Scholar 

  73. Song JH, Couzis A, Lee JW (2010) Investigation of macroscopic interfacial dynamics between clathrate hydrates and surfactant solutions. Langmuir 26:18119–18124

    Article  Google Scholar 

  74. Torré JP, Dicharry C, Ricaurte M, Daniel-David D, Broseta D (2011) CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives. Energy Procedia 4:621–628

    Article  Google Scholar 

  75. Torre J, Ricaurte M, Dicharry C, Broseta D (2012) CO2 enclathration in the presence of water-soluble hydrate promoters: Hydrate phase equilibria and kinetic studies in quiescent conditions. Chem Eng Sci 82:1–13

    Article  Google Scholar 

  76. Li X, Chen C, Chen Y, Li Y, Li H (2015) Kinetics of methane clathrate hydrate formation in water-in-oil emulsion. Energy Fuels 29:2277–2288

    Article  Google Scholar 

  77. Dalmazzone D, Hamed N, Dalmazzone C (2009) DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion T / K 64:2020–2026

    Google Scholar 

  78. Mu L, Li S, Ma QL, Zhang K, Sun CY, Chen GJ, Liu B, Yang LY (2014) Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion. Fluid Phase Equilib 362:28–34

    Article  Google Scholar 

  79. Xiang CS, Peng BZ, Liu H, Sun CY, Chen GJ, Sun BJ (2013) Hydrate formation/dissociation in (Natural Gas + Water + Diesel Oil) emulsion systems. Energies 6:1009–1022

    Article  Google Scholar 

  80. Lv X, Shi B, Zhou S, Peng H, Lei Y, Yu P (2018) Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop. RSC Adv 8:36484–36492

    Article  Google Scholar 

  81. Ding K, Zhong DL, Lu YY, Le Wang J (2015) Enhanced precombustion capture of carbon dioxide by gas hydrate formation in Water-In-Oil emulsions. Energy Fuels 29:2971–2978

    Article  Google Scholar 

  82. A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion

    Google Scholar 

  83. Yegya Raman AK, Venkataramani D, Bhagwat S, Martin T, Clark PE, Aichele CP (2016) Emulsion stability of surfactant and solid stabilized water-in-oil emulsions after hydrate formation and dissociation. Colloids Surf A Physicochem Eng Asp 506:607–621

    Article  Google Scholar 

  84. Nashed O, Partoon B, Lal B, Sabil KM, Shariff AM (2018) Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation. J Nat Gas Sci Eng 55:452–465

    Article  Google Scholar 

  85. Said S, Govindaraj V, Herri JM, Ouabbas Y, Khodja M, Belloum M, Sangwai JS, Nagarajan R (2016) A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the CO2 capture process. J Nat Gas Sci Eng 32:95–108

    Article  Google Scholar 

  86. Arjang S, Manteghian M, Mohammadi A (2013) Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7MPa. Chem Eng Res Des 91:1050–1054

    Article  Google Scholar 

  87. Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H (2017) Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles. Chem Eng Res Des 120:325–332

    Article  Google Scholar 

  88. Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H (2017) Nucleation of ethane hydrate in water containing silver nanoparticles. Mater Des 126:190–196

    Article  Google Scholar 

  89. Kakati H, Mandal A, Laik S (2016) Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation. J Ind Eng Chem 35:357–368

    Article  Google Scholar 

  90. Aliabadi M, Rasoolzadeh A, Esmaeilzadeh F, Alamdari AM (2015) Experimental study of using CuO nanoparticles as a methane hydrate promoter. J Nat Gas Sci Eng 27:1518–1522

    Article  Google Scholar 

  91. Najibi H, Mirzaee Shayegan M, Heidary H (2015) Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. J Nat Gas Sci Eng 23:315–323

    Article  Google Scholar 

  92. Kumar A, Kushwaha OS, Rangsunvigit P, Linga P, Kumar R (2016) Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation. Can J Chem Eng 94:2160–2167

    Article  Google Scholar 

  93. Veluswamy HP, Kumar S, Kumar R, Rangsunvigit P, Linga P (2016) Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage. Fuel 182:907–919

    Article  Google Scholar 

  94. Mech D, Gupta P, Sangwai JS (2016) Kinetics of methane hydrate formation in an aqueous solution of thermodynamic promoters (THF and TBAB) with and without kinetic promoter (SDS). J Nat Gas Sci Eng 35:1519–1534

    Article  Google Scholar 

  95. Kakati H, Mandal A, Laik S (2016) Effect of SDS/THF on thermodynamic and kinetic properties of formation of hydrate from a mixture of gases (CH4+C2H6+C3H8) for storing gas as hydrate. J Energy Chem 25:409–417

    Article  Google Scholar 

  96. Pan Z, Liu Z, Zhang Z, Shang L, Ma S (2018) Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J Nat Gas Sci Eng 56:266–280

    Article  Google Scholar 

  97. Øtergaard KK, Anderson R, Llamedo M, Tohidi B (2002) Hydrate phase equilibria in porous media: Effect of pore size and salinity. Terra Nov 14:307–312

    Article  Google Scholar 

  98. Moroi Y, Matuura R (1988) Thermodynamics of solubilization into surfactant micelles: effect of hydrophobicity of both solubilizate and surfactant molecules. J Colloid Interface Sci 125:456–462

    Article  Google Scholar 

  99. Mandal A, Laik S (2008) Effect of the promoter on gas hydrate formation and dissociation. Energy Fuels 22:2527–2532

    Article  Google Scholar 

  100. Nashed O, Partoon B, Lal B, Sabil KM, Shariff AM (2019) Investigation of functionalized carbon nanotubes’ performance on carbon dioxide hydrate formation. Energy 174:602–610

    Article  Google Scholar 

  101. Choi JW, Chung JT, Kang YT (2014) CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants. Energy 78:869–876

    Article  Google Scholar 

  102. Yang M, Song Y, Jiang L, Zhao Y, Ruan X, Zhang Y, Wang S (2014) Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl Energy 116:26–40

    Article  Google Scholar 

  103. Liu Z, Pan Z, Zhang Z, Liu P, Shang L, Li B (2018) Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy Fuels 32:5736–5749

    Article  Google Scholar 

  104. Pandey JS, Daas YJ, von Solms N (2020) Methane hydrate formation, storage and dissociation behavior in unconsolidated sediments in the presence of environment-friendly promoters

    Google Scholar 

  105. Bui T, Phan A, Monteiro D, Lan Q, Ceglio M, Acosta E, Krishnamurthy P, Striolo A (2017) Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management. Langmuir 33:2263–2274

    Article  Google Scholar 

  106. Sicard F, Bui T, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A (2018) Emergent properties of antiagglomerant films control methane transport: implications for hydrate management. Langmuir 34:9701–9710

    Article  Google Scholar 

  107. Bui T, Sicard F, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A (2018) Antiagglomerants affect gas hydrate growth. J Phys Chem Lett 9:3491–3496

    Article  Google Scholar 

  108. Phan A, Bui T, Acosta E, Krishnamurthy P, Striolo A (2016) Molecular mechanisms responsible for hydrate anti-agglomerant performance. Phys Chem Chem Phys 18:24859–24871

    Article  Google Scholar 

  109. Tokiwa Y, Sakamoto H, Takiue T, Aratono M, Matsubara H (2015) Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture—water interfaces. J Phys Chem B 119:6235–6241

    Article  Google Scholar 

  110. Lei Q, Bain CD (2004) Surfactant-induced surface freezing at the alkane-water interface. Phys Rev Lett 92:2–5

    Article  Google Scholar 

  111. Huo Z, Freer E, Lamar M, Sannigrahi B, Knauss DM, Sloan ED (2001) Hydrate plug prevention by anti-agglomeration. Chem Eng Sci 56:4979–4991

    Article  Google Scholar 

  112. York JD, Firoozabadi A (2009) Effect of brine on hydrate antiagglomeration. Energy Fuels 23:2937–2946

    Article  Google Scholar 

  113. York JD, Firoozabadi A (2008) Alcohol cosurfactants in hydrate antiagglomeration. J Phys Chem B 112:10455–10465

    Article  Google Scholar 

  114. Aman ZM, Haber A, Ling NNA, Thornton A, Johns ML, May EF (2015) Effect of brine salinity on the stability of hydrate-in-oil dispersions and water-in-oil emulsions. Energy Fuels 29:7948–7955

    Article  Google Scholar 

  115. Striolo A, Phan A, Walsh MR (2019) Molecular properties of interfaces relevant for clathrate hydrate agglomeration. Curr Opin Chem Eng 25:57–66

    Article  Google Scholar 

  116. Stern LA, Circone S, Kirby SH, Durham WB (2001) Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B 105:1756–1762

    Article  Google Scholar 

  117. Kang HJ, Yang Y, Ki MS, Shin MS, Choi J, Cha JH, Lee D (2016) A concept study for cost effective NGH mid-stream supply chain establishing strategies. Ocean Eng 113:162–173

    Article  Google Scholar 

  118. Rehder G, Eckl R, Elfgen M, Falenty A, Hamann R, Kähler N, Kuhs WF, Osterkamp H, Windmeier C (2012) Methane hydrate pellet transport using the self-preservation effect: a techno-economic analysis. Energies 5:2499–2523

    Article  Google Scholar 

  119. Zhang G, Rogers RE (2008) Ultra-stability of gas hydrates at 1 atm and 268.2 K. Chem Eng Sci 63:2066–2074

    Article  Google Scholar 

  120. Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187

    Article  Google Scholar 

  121. Kang KC, Linga P, Park KN, Choi SJ, Lee JD (2014) Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl−, SO42−). Desalination 353:84–90

    Article  Google Scholar 

  122. Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD (2011) A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 274 91–96

    Google Scholar 

  123. He T, Nair SK, Babu P, Linga P, Karimi IA (2018) A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. Appl Energy 222:13–24

    Article  Google Scholar 

  124. Li F, Chen Z, Dong H, Shi C, Wang B, Yang L, Ling Z (2018) Promotion effect of graphite on cyclopentane hydrate based desalination. Desalination 445:197–203

    Article  Google Scholar 

  125. Hong S, Moon S, Lee Y, Lee S, Park Y (2019) Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination. Chem Eng J 363:99–106

    Article  Google Scholar 

  126. McAuliffe C (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J Phys Chem 70:1267–1275

    Article  Google Scholar 

  127. Herslund PJ, Thomsen K, Abildskov J, Von Solms N (2014) Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib 375:89–103

    Article  Google Scholar 

  128. Herri JM, Bouchemoua A, Kwaterski M, Brântuas P, Galfré A, Bouillot B, Douzet J, Ouabbas Y, Cameirao A (2014) Amélioration de la sélectivité du captage du CO2 dans les semi-clathrates hydrates en utilisant les ammoniums quaternaires comme promoteurs thermodynamiques. Oil Gas Sci Technol 69:947–968

    Article  Google Scholar 

  129. Ho-Van S, Bouillot B, Douzet J, Babakhani SM, Herri JM (2019) Cyclopentane hydrates-a candidate for desalination? J Environ Chem Eng 7:103359

    Article  Google Scholar 

  130. Erfani A, Varaminian F (2016) Kinetic promotion of non-ionic surfactants on cyclopentane hydrate formation. J Mol Liq 221:963–971

    Article  Google Scholar 

  131. Brown EP, Koh CA (2016) Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties. Phys Chem Chem Phys 18:594–600

    Article  Google Scholar 

  132. Henry D, Gilles B, Jean-Philippe T, Christophe, D, Philippe G (2019) Evaluation of the performance of a new biodegradable AA-LDHI in cyclopentane hydrate and CH4/C3H8 gas hydrate systems. SPE Middle East Oil Gas Show Conf. MEOS, Proc, 2019-March, pp 1–13

    Google Scholar 

  133. Linga P, Kumar R, Englezos P (2007) Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem Eng Sci 62:4268–4276

    Article  Google Scholar 

  134. Kumar R, Linga P, Englezos P (2006) Pre post combustion capture of carbon dioxide via hydrate formation. IEEE EIC Clim Chang Technol Conf EICCCC 2006:1–7

    Google Scholar 

  135. Xu CG, Li X (2014) Sen Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316

    Article  Google Scholar 

  136. Ho LC, Babu P, Kumar R, Linga P (2013) HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane. Energy 63:252–259

    Article  Google Scholar 

  137. da Lirio CFS, Pessoa FLP, Uller AMC (2013) Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF). Chem Eng Sci 96:118–123

    Article  Google Scholar 

  138. Jiang, L. Le, Li AR, Xu JF, Liu YJ (2016) Effects of SDS and SDBS on CO2Hydrate formation, induction time, storage capacity and stability at 274.15 K and 5.0 MPa. Chem Select 1:6111–6114

    Google Scholar 

  139. Yang M, Liu W, Song Y, Ruan X, Wang X, Zhao J, Jiang L, Li Q (2013) Effects of additive mixture (THF/SDS) on the thermodynamic and kinetic properties of CO2/H2 hydrate in porous media. Ind Eng Chem Res 52:4911–4918

    Article  Google Scholar 

  140. Song Y, Wang X, Yang M, Jiang L, Liu Y, Dou B, Zhao J, Wang S (2013) Study of selected factors affecting hydrate-based carbon dioxide separation from simulated fuel gas in porous media. Energy Fuels 27:3341–3348

    Article  Google Scholar 

  141. Pandey JS, von Solms N (2019) Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios. Energies 12:2309

    Article  Google Scholar 

  142. Frankcombe TJ, Kroes GJ (2007) Molecular dynamics simulations of type-sII hydrogen clathrate hydrate close to equilibrium conditions. J Phys Chem C 111:13044–13052

    Article  Google Scholar 

  143. Struzhkin VV, Militzer B, Mao WL, Mao HK, Hemley RJ (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151

    Article  Google Scholar 

  144. Ozaki M, Tomura S, Ohmura R, Mori YH (2014) Comparative study of large-scale hydrogen storage technologies: Is hydrate-based storage at advantage over existing technologies? Int J Hydrogen Energy 39:3327–3341

    Article  Google Scholar 

  145. Trueba AT, Radović IR, Zevenbergen JF, Kroon MC, Peters CJ (2012) Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates. Int J Hydrogen Energy 37:5790–5797

    Article  Google Scholar 

  146. Veluswamy HP, Chin WI, Linga P (2014) Clathrate hydrates for hydrogen storage: The impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. Int J Hydrogen Energy 39:16234–16243

    Article  Google Scholar 

  147. Du J, Wang L, Liang D, Li D (2012) Phase equilibria and dissociation enthalpies of hydrogen semi-clathrate hydrate with tetrabutyl ammonium nitrate. J Chem Eng Data 57:603–609

    Article  Google Scholar 

  148. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science (80-.) 306:469–471

    Article  Google Scholar 

  149. Veluswamy HP, Linga P (2013) Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int J Hydrogen Energy 38:4587–4596

    Article  Google Scholar 

  150. Alavi S, Ripmeester JA (2007) Hydrogen-gas migration through clathrate hydrate cages. Angew. Chemie—Int. Ed. 46:6102–6105

    Article  Google Scholar 

  151. Okuchi T, Moudrakovski IL, Ripmeester JA (2007) Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate. Appl Phys Lett 91:2005–2008

    Article  Google Scholar 

  152. Kumar R, Klug DD, Ratcliffe CI, Tulk CA, Ripmeester JA (2013) Low-pressure synthesis and characterization of hydrogen-filled ice Ic. Angew Chemie—Int Ed 52:1531–1534

    Article  Google Scholar 

  153. Lu H, Wang J, Liu C, Ratcliffe CI, Becker U, Kumar R, Ripmeester J (2012) Multiple H 2 occupancy of cages of clathrate hydrate under mild conditions. J Am Chem Soc 134:9160–9162

    Article  Google Scholar 

  154. Grim RG, Kerkar PB, Sloan ED, Koh CA, Sum AK (2012) Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching. J Chem Phys 136

    Google Scholar 

  155. Veluswamy HP, Chen JY, Linga P (2015) Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem Eng Sci 126:488–499

    Article  Google Scholar 

  156. Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrogen Energy 34:9173–9180

    Article  Google Scholar 

  157. Veluswamy HP, Hong QW, Linga P (2016) Morphology study of methane hydrate formation and dissociation in the presence of amino acid

    Google Scholar 

  158. Carter BO, Wang W, Adams DJ, Cooper AI (2010) Gas storage in “Dry Water” and “Dry Gel” clathrates. Langmuir 26:3186–3193

    Article  Google Scholar 

  159. Liu Y, Chen B, Chen Y, Zhang S, Guo W, Cai Y, Tan B, Wang W (2015) Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol 3:815–819

    Article  Google Scholar 

  160. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta—Biomembr 1508:235–251

    Article  Google Scholar 

  161. Campbell JM (1992) Gas conditioning and processing, vol 2. The equipment modules, ISBN 0-9703449-0-2

    Google Scholar 

  162. Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd edn, ISBN 9781420008494

    Google Scholar 

  163. Carroll J (2014) Natural gas hydrates—a guide for engineers, 3rd edn, ISBN 978-0-12-800074-8

    Google Scholar 

  164. Anderson BJ, Tester JW, Borghi GP, Trout BL (2005) Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. J Am Chem Soc 127:17852–17862

    Article  Google Scholar 

  165. Xiao C, Adidharma H (2009) Dual function inhibitors for methane hydrate. Chem Eng Sci 64:1522–1527

    Article  Google Scholar 

  166. Kelland MA, Moi N, Howarth M (2013) Breakthrough in synergists for kinetic hydrate inhibitor polymers, hexaalkylguanidinium salts: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam. Energy Fuels

    Google Scholar 

  167. Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH (2013) Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep 3:1–7

    Article  Google Scholar 

  168. Lee D, Go W, Seo Y (2019) Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids. Energy

    Google Scholar 

  169. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem

    Google Scholar 

  170. Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry: COSMO-RS Approach. AIChE J

    Google Scholar 

  171. Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an Alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol Eng

    Google Scholar 

  172. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2

    Google Scholar 

  173. Dickens GR, Quinby-Hunt MS (1997) Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications. J Geophys Res B Solid Earth 102:773–783

    Article  Google Scholar 

  174. Kirkwood JG (1934) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys

    Google Scholar 

  175. Nashed O, Dadebayev D, Khan MS, Bavoh CB, Lal B, Shariff AM (2018) Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. J Mol Liq

    Google Scholar 

  176. Pieroen AP (1955) Gas hydrates—approximate relations between heat of formation, composition and equilibrium temperature lowering by “inhibitors”. Recl des Trav Chim des Pays-Bas 74:995–1002

    Article  Google Scholar 

  177. Partoon B, Wong NMS, Sabil KM, Nasrifar K, Ahmad MR (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilib

    Google Scholar 

  178. Javanmardi J, Moshfeghian M, Maddox RN (1998) Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions. Energy Fuels 12:219–222

    Article  Google Scholar 

  179. Javanmardi J, Moshfeghian M, Maddox RN (2001) An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can J Chem Eng 79:367–373

    Article  Google Scholar 

  180. Bavoh CB, Partoon B, Lal B, Gonfa G, Foo Khor S, Sharif AM (2017) Inhibition effect of amino acids on carbon dioxide hydrate. Chem Eng Sci 171:331–339

    Article  Google Scholar 

  181. Xiao C, Wibisono N, Adidharma H (2010) Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chem Eng Sci 65:3080–3087

    Article  Google Scholar 

  182. Atilhan M, Pala N, Aparicio S (2014) A quantum chemistry study of natural gas hydrates. J Mol Model 20:1–15

    Article  Google Scholar 

  183. Tariq M, Atilhan M, Khraisheh M, Othman E, Castier M, García G, Aparicio S, Tohidi B (2016) Experimental and DFT approach on the determination of natural gas hydrate equilibrium with the use of excess N2 and choline chloride ionic liquid as an inhibitor. Energy Fuels 30:2821–2832

    Article  Google Scholar 

  184. Choudhary N, Das S, Roy S, Kumar R (2016) Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation. Fuel 186:613–622

    Article  Google Scholar 

  185. Mohamed NA, Tariq M, Atilhan M, Khraisheh M, Rooney D, Garcia G, Aparicio S (2017) Investigation of the performance of biocompatible gas hydrate inhibitors via combined experimental and DFT methods. J Chem Thermodyn 111:7–19

    Article  Google Scholar 

  186. Bellucci MA, Walsh MR, Trout BL (2018) Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates 122

    Google Scholar 

  187. Fang B, Ning F, Hu S, Guo D, Ou W, Wang C, Wen J, Sun J, Liu Z, Koh CA (2020) The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study. RSC Adv 10:31027–31038

    Article  Google Scholar 

  188. Bhattacharjee G, Choudhary N, Barmecha V, Kushwaha OS, Pande NK, Chugh P, Roy S, Kumar R (2019) Methane recovery from marine gas hydrates: a bench scale study in presence of low dosage benign additives. Appl Energy 253:113566

    Article  Google Scholar 

  189. Sammalkorpi M, Karttunen M, Haataja M (2007) Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. J Phys Chem B 111:11722–11733

    Article  Google Scholar 

  190. Chun BJ, Choi JIl, Jang SS (2015) Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids Surfaces A Physicochem Eng Asp 474:36–43

    Google Scholar 

  191. Kitabata M, Fujimoto K, Yoshii N, Okazaki S (2016) A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water. J Chem Phys 144:224701

    Article  Google Scholar 

  192. Bresme F, Faraudo J (2004) Computer simulation studies of newton black films. Langmuir 20:5127–5137

    Article  Google Scholar 

  193. Hande VR, Chakrabarty S (2016) Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys Chem Chem Phys 18:21767–21779

    Article  Google Scholar 

  194. Volkov NA, Tuzov NV, Shchekin AK (2016) Molecular dynamics study of salt influence on transport and structural properties of SDS micellar solutions. Fluid Phase Equilib 424:114–121

    Article  Google Scholar 

  195. Poghosyan AH, Arsenyan LH, Gharabekyan HH, Falkenhagen S, Koetz J, Shahinyan AA (2011) Molecular dynamics simulations of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of poly(diallyldimethylammonium chloride) (PDADMAC). J Colloid Interface Sci 358:175–181

    Article  Google Scholar 

  196. Poghosyan AH, Arsenyan LH, Shahinyan AA, Koetz J (2016) Polyethyleneimine loaded inverse SDS micelle in pentanol/toluene media. Colloids Surf A Physicochem Eng Asp 506:402–408

    Article  Google Scholar 

  197. Fujimoto K, Yoshii N, Okazaki S (2012) Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations. J Chem Phys 136:014511

    Article  Google Scholar 

  198. Fujimoto K, Yoshii N, Okazaki S (2012) Molecular dynamics study of free energy of transfer of alcohol and amine from water phase to the micelle by thermodynamic integration method. J Chem Phys 137:094902

    Article  Google Scholar 

  199. Brodskaya EN (2012) Computer simulations of micellar systems. Colloid J 74:154–171

    Article  Google Scholar 

  200. Kinning DJ, Winey KI, Thomas EL (1988) Structural transitions from spherical to nonspherical micelles in blends of poly(styrene-butadiene) diblock copolymer and polystyrene homopolymers. Macromolecules 21:3502–3506

    Article  Google Scholar 

  201. Choudhary N, Hande VR, Roy S, Chakrabarty S, Kumar R (2018) Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: a molecular dynamics study. J Phys Chem B 122:6536–6542

    Article  Google Scholar 

  202. Khurana M, Yin Z, Linga P (2017) A review of clathrate hydrate nucleation. ACS Sustain Chem Eng 5:11176–11203

    Article  Google Scholar 

  203. Walsh MR, Koh CA, Sloan DE, Sum AK, Wu DT (2009) Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science (80-.) 326:1095–1098

    Article  Google Scholar 

  204. Michalis VK, Tsimpanogiannis IN, Stubos AK, Economou IG (2016) Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system. Phys Chem Chem Phys 18:23538–23548

    Article  Google Scholar 

  205. Kumar A, Veluswamy HP, Linga P, Kumar R (2019) Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: implications to energy storage. Fuel 236:1505–1511

    Article  Google Scholar 

  206. Carver TJ, Drew MGB, Rodger PM (1995) Inhibition of crystal growth in methane hydrate. J Chem Soc, Faraday Trans 91:3449–3460

    Article  Google Scholar 

  207. Mehrabian H, Bellucci MA, Walsh MR, Trout BL (2018) Effect of Salt on Antiagglomerant Surface Adsorption in Natural Gas Hydrates. J Phys Chem C 122:12839–12849

    Article  Google Scholar 

  208. Mehrabian H, Walsh MR, Trout BL (2019) In Silico Analysis of the Effect of Alkyl Tail Length on Antiagglomerant Adsorption to Natural Gas Hydrates in Brine. J Phys Chem C 123:17239–17248

    Article  Google Scholar 

  209. Jiménez-Ángeles F, Firoozabadi A (2018) Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates. ACS Cent Sci 4:820–831

    Article  Google Scholar 

  210. Naullage PM, Bertolazzo AA, Molinero V (2019) How do surfactants control the agglomeration of clathrate hydrates?. ACS Cent, Sci

    Book  Google Scholar 

  211. Bavoh CB, Lal B, Nashed O, Khan MS, Keong LK, Bustam MA (2016) COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation. Chinese J. Chem. Eng

    Google Scholar 

  212. Klamt A, Eckert F (2000) COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib 172:43–72

    Article  Google Scholar 

  213. Klamt A, Eckert F, Hornig M, Beck ME, Brger T (2002) Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J Comput Chem 23:275–281

    Article  Google Scholar 

  214. Klamt A (2012) Solvent-screening and co-crystal screening for drug development with COSMO-RS. J Cheminform 4:1–2

    Article  Google Scholar 

  215. Paduszyński K (2017) An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys Chem Chem Phys 19:11835–11850

    Article  Google Scholar 

  216. Xia L, Wang J, Liu S, Li Z, Pan H (2019) Prediction of CO2 solubility in ionic liquids based on multi-model fusion method. Processes 7:258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas von Solms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, J.S., Karcz, A.P., von Solms, N. (2021). The Role of Surfactants in Gas Hydrate Management. In: Solling, T., Shahzad Kamal, M., Shakil Hussain, S.M. (eds) Surfactants in Upstream E&P. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-70026-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70026-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70025-6

  • Online ISBN: 978-3-030-70026-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics