Abstract
This chapter provides an introductory understanding of the role of surfactants in the formation of gas hydrates. The main theories that have been developed over the past decades are discussed with support from computational aspects that have become increasingly useful in this regard. Particularly for surfactants, the structure-property relations are key in the full understanding of their behavior in the context of hydrate formation kinetics and equilibria, which are presented with evidence from various studies. Furthermore, surfactants can benefit from co-promoters that may be utilized in hydrate formation, so we present some details to highlight the importance of their interactions. More recently, bio-based surfactants have gained interest out of environmental concerns, and we showcase some of the most interesting cases of their implementation. Although there have been many examples of how gas hydrates can be used for cold storage, hydrogen storage, and other industrial applications, the usage of surfactants or other additives has not been well supported with clear fundamental understandings. Thus, there have been endeavors to gain these insights via computational tools that span different scales, like quantum mechanics and molecular dynamic simulations. The use of these tools is explained with examples. Combining all these different aspects, we hope to provide some understanding of the role of surfactants in current and emerging hydrate management technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sloan ED, Koh CA, Koh C (2007) Clathrate hydrates of natural gases, 3rd edn, CRC Press
Koh CA (2002) Towards a fundamental understanding of natural gas hydrates. Chem Soc Rev 31:157–167
Makogon YF (2010) Natural gas hydrates—a promising source of energy. J Nat Gas Sci Eng
Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215
Shina K, Kumarb R, Udachina KA, Alavia S, Ripmeester JA (2012) Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, andother planetary systems. Proc Natl Acad Sci USA 109:14785–14790
Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855
Jamaluddin AKM, Kalogerakis N, Bishnoi PR (1991) Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions. J Pet Sci Eng 5:323–335
Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuels 20:825–847
Chua PC, Kelland MA (2018) Study of the gas hydrate antiagglomerant performance of a series of mono-and bis-amine oxides: dual antiagglomerant and kinetic hydrate inhibition behavior. Energy Fuels 32:1674–1684
Englezos P, Lee JD (2005) Gas hydrates: a cleaner source of energy and opportunity for innovative technologies. Korean J Chem Eng 22:671–681
Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P (2018) A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl Energy 216:262–282
Veluswamy HP, Kumar R, Linga P (2014) Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl Energy 122:112–132
Dashti H, Yew LZ, Lou X Recent advances in gas hydrate-based CO2 capture.pdf
Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279
Li A, Wang J, Bao B (2019) High-efficiency CO2 capture and separation based on hydrate technology: a review. Greenh Gases Sci Technol 9:175–193
Babu P, Nambiar A, He T, Karimi IA, Lee JD, Englezos P, Linga P (2018) A review of clathrate hydrate based desalination to strengthen energy-water nexus. ACS Sustain Chem Eng 6:8093–8107
Gayet P, Dicharry C, Marion G, Graciaa A, Lachaise J, Nesterov A (2005) Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter 60:5751–5758
Kalogerakis N, Jamaluddin AKM, Dholabhai PD, Bishnoi PR (1993) Effect of surfactants on hydrate formation kinetics. In: Proceedings of the proceedings of the 1993 spe international symposium on oilfield chemistry, Society of Petroleum Engineers 1:375–383
Kumar A, Bhattacharjee G, Kulkarni BD, Kumar R (2015) Role of surfactants in promoting gas hydrate formation. Ind Eng Chem Res 54:12217–12232
Pandey JS, Daas YJ, Solms N (2020) Von screening of amino acids and surfactant as hydrate promoter for CO2 capture from flue gas
Kvamme B, Selvåg J, Saeidi N, Kuznetsova T (2018) Methanol as a hydrate inhibitor and hydrate activator. Phys Chem Chem Phys 20:21968–21987
Linga P, Clarke MA (2017) A review of reactor designs and materials employed for increasing the rate of gas hydrate formation. Energy Fuels 31:1–13
Kumar A, Sakpal T, Linga P, Kumar R (2015) Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing. Chem Eng Sci 122:78–85
Lim YA, Babu P, Kumar R, Linga P (2013) Morphology of carbon dioxide-hydrogen-cyclopentane hydrates with or without sodium dodecyl sulfate. Cryst Growth Des 13:2047–2059
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H (2014) Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study. J Phys Chem B 118:1900–1906
Zhang JS, Lee S, Lee JW (2007) Kinetics of methane hydrate formation from sds solution, pp 6353–6359
Zhang J, Lee JW (2009) Effect of sodium dodecyl sulfate on the supercooling point of ice and clathrate hydrates. Energy Fuels 23:3045–3047
Zhong Y, Rogers RE (2000) Surfactant effects on gas hydrate formation. Chem Eng Sci 55:4175–4187
World THE, Surface OF The world of surface science *, pp 14–24
Fuhrhop JH, Koning J (1994) Membranes and molecular assemblies, Monographs in supramolecular chemistry, The Royal Society of Chemistry, ISBN 978-0-85186-732-8
He Y, Sun M-T, Chen C, Zhang G-D, Chao K, Lin Y, Wang F (2019) Surfactant-based promotion to gas hydrate formation for energy storage. J Mater Chem A 7:21634–21661
Karaaslan U, Parlaktuna M (2002) Promotion effect of polymers and surfactants on hydrate formation rate. Energy Fuels 16:1413–1416
Karaaslan U, Parlaktuna M (2000) Surfactants as hydrate promoters? Energy Fuels 14:1103–1107
Okutani K, Kuwabara Y, Mori YH (2008) Surfactant effects on hydrate formation in an unstirred gas / liquid system : an experimental study using methane and sodium alkyl sulfates 63:183–194
Kumar A, Sakpal T, Linga P, Kumar R (2013) Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics. Fuel 105:664–671
Veluswamy HP, Ang WJ, Zhao D, Linga P (2015) In fl uence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen / tetrahydrofuran hydrates. Chem Eng Sci 132:186–199
Rogers RE, Kothapalli C, Lee MS, Woolsey JR (2008) Catalysis of Gas Hydrates by Biosurfactants in Seawater-Saturated Sand/Clay. Can J Chem Eng 81:973–980
Arora A, Cameotra SS, Kumar R, Balomajumder C, Singh AK, Santhakumari B, Kumar P, Laik S (2016) Biosurfactant as a promoter of methane hydrate formation: thermodynamic and kinetic studies. Sci Rep 6:1–13
Rogers R, Zhang G, Dearman J, Woods C (2007) Investigations into surfactant/gas hydrate relationship. J Pet Sci Eng 56:82–88
Barakat Y, Fortney LN, Schechter RS, Wade WH, Yiv SH, Graciaa A (1983) Criteria for structuring surfactants to maximize solubilization of oil and water. II. Alkyl benzene sodium sulfonates. J Colloid Interface Sci 92:561–574
Kunieda H, Shinoda K (1982) Correlation between critical solution phenomena and ultralow interfacial tensions in a surfactant/water/oil system. Chem Soc Japan 55:1777–1781
Daimaru T, Yamasaki A, Yanagisawa Y (2007) Effect of surfactant carbon chain length on hydrate formation kinetics. J Pet Sci Eng 56:89–96
Dicharry C, Diaz J, Torré JP, Ricaurte M (2016) Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2–CH4 gas hydrates. Chem Eng Sci 152:736–745
Roy S, Mehra A, Bhowmick D (1997) Prediction of solubility of nonpola—gases in micellar solutions of ionic surfactants. J Colloid Interface Sci 196:53–61
Luo H, Sun CY, Peng BZ, Chen GJ (2006) Solubility of ethylene in aqueous solution of sodium dodecyl sulfate at ambient temperature and near the hydrate formation region. J Colloid Interface Sci 298:952–956
Peng BZ, Chen GJ, Luo H, Sun CY (2006) Solubility measurement of methane in aqueous solution of sodium dodecyl sulfate at ambient temperature and near hydrate conditions. J Colloid Interface Sci 304:558–561
Pandey JS, Daas YJ, Solms N (2019) Von insights into kinetics of methane hydrate formation in the presence of surfactants
Di Profio P, Arca S, Germani R, Savelli G (2005) Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci 60:4141–4145
Zhang JS, Lee S, Lee JW (2007) Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point? J Colloid Interface Sci 315:313–318
Albertí M, Costantini A, Laganá A, Pirani F (2012) Are micelles needed to form methane hydrates in sodium dodecyl sulfate solutions? J Phys Chem B 116:4220–4227
Kobayashi I, Ito Y, Mori YH (2001) Microscopic observations of clathrate-hydrate films formed at liquid/liquid interfaces. I. Morphology of hydrate films. Chem Eng Sci 56:4331–4338
Watanabe K, Imai S, Mori YH (2005) Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using HFC-32 and sodium dodecyl sulfate. Chem Eng Sci 60:4846–4857
Yoslim J, Linga P, Englezos P (2010) Enhanced growth of methane—propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. J Cryst Growth 313:68–80
Karanjkar PU, Lee JW, Morris JF (2012) Surfactant effects on hydrate crystallization at the water-oil interface: hollow-conical crystals. Cryst Growth Des 12:3817–3824
Tajima H, Kiyono F, Yamasaki A (2010) Direct observation of the effect of sodium dodecyl sulfate (SDS) on the gas hydrate formation process in a static mixer. Energy Fuels 24:432–438
Mitarai M, Kishimoto M, Suh D, Ohmura R (2015) Surfactant effects on the crystal growth of clathrate hydrate at the interface of water and hydrophobic-guest liquid. Cryst Growth Des 15:812–821
Hayama H, Mitarai M, Mori H, Verrett J, Servio P, Ohmura R (2016) Surfactant Effects on Crystal Growth Dynamics and Crystal Morphology of Methane Hydrate Formed at Gas/Liquid Interface. Cryst Growth Des 16:6084–6088
Hayama H, Mitarai M, Mori H, Ohmura R (2016) Methane hydrate crystal growth at the gas/liquid interface in the presence of sodium dodecyl sulfate. Procedia Eng 148:339–345
Wang F, Wang L, Wang C, Guo G, Liu G, Luo S, Guo R (2015) Direction controlled methane hydrate growth. Cryst Growth Des 15:5112–5117
Wang F, Jia ZZ, Luo SJ, Fu SF, Wang L, Shi XS, Wang CS, Guo RB (2015) Effects of different anionic surfactants on methane hydrate formation. Chem Eng Sci 137:896–903
Botimer JD, Dunn-Rankin D, Taborek P (2016) Evidence for immobile transitional state of water in methane clathrate hydrates grown from surfactant solutions. Chem Eng Sci 142:89–96
Molokitina NS, Nesterov AN, Podenko LS, Reshetnikov AM (2019) Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel 235:1400–1411
Ando N, Kuwabara Y, Mori YH (2012) Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using methane and micelle-forming surfactants. Chem Eng Sci 73:79–85
Wang F, Liu GQ, Meng HL, Guo G, Luo SJ, Guo RB (2016) Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters. ACS Sustain Chem Eng 4:2107–2113
Daniel-David D, Guerton F, Dicharry C, Torré JP, Broseta D (2015) Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants. Chem Eng Sci 132:118–127
Zhang JS, Lo C, Somasundaran P, Lu S, Couzis A, Lee JW (2008) Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface. J Phys Chem C 112:12381–12385
Zhang JS, Lo C, Somasundaran P, Lee JW (2010) Competitive adsorption between SDS and carbonate on tetrahydrofuran hydrates. J Colloid Interface Sci 341:286–288
Lo C, Zhang JS, Couzis A, Somasundaran P, Lee JW (2010) Adsorption of cationic and anionic surfactants on cyclopentane hydrates. J Phys Chem C 114:13385–13389
Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48
Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. I: Isomerically pure anionic surfactants. J Colloid Interface Sci 85:463–478
Somasundaran P, Fuerstenau DW (1966) Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J Phys Chem 70:90–96
Zerpa LE, Salager JL, Koh CA, Sloan ED, Sum AK (2011) Surface chemistry and gas hydrates in flow assurance. Ind Eng Chem Res 50:188–197
Song JH, Couzis A, Lee JW (2010) Investigation of macroscopic interfacial dynamics between clathrate hydrates and surfactant solutions. Langmuir 26:18119–18124
Torré JP, Dicharry C, Ricaurte M, Daniel-David D, Broseta D (2011) CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives. Energy Procedia 4:621–628
Torre J, Ricaurte M, Dicharry C, Broseta D (2012) CO2 enclathration in the presence of water-soluble hydrate promoters: Hydrate phase equilibria and kinetic studies in quiescent conditions. Chem Eng Sci 82:1–13
Li X, Chen C, Chen Y, Li Y, Li H (2015) Kinetics of methane clathrate hydrate formation in water-in-oil emulsion. Energy Fuels 29:2277–2288
Dalmazzone D, Hamed N, Dalmazzone C (2009) DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion T / K 64:2020–2026
Mu L, Li S, Ma QL, Zhang K, Sun CY, Chen GJ, Liu B, Yang LY (2014) Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion. Fluid Phase Equilib 362:28–34
Xiang CS, Peng BZ, Liu H, Sun CY, Chen GJ, Sun BJ (2013) Hydrate formation/dissociation in (Natural Gas + Water + Diesel Oil) emulsion systems. Energies 6:1009–1022
Lv X, Shi B, Zhou S, Peng H, Lei Y, Yu P (2018) Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop. RSC Adv 8:36484–36492
Ding K, Zhong DL, Lu YY, Le Wang J (2015) Enhanced precombustion capture of carbon dioxide by gas hydrate formation in Water-In-Oil emulsions. Energy Fuels 29:2971–2978
A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion
Yegya Raman AK, Venkataramani D, Bhagwat S, Martin T, Clark PE, Aichele CP (2016) Emulsion stability of surfactant and solid stabilized water-in-oil emulsions after hydrate formation and dissociation. Colloids Surf A Physicochem Eng Asp 506:607–621
Nashed O, Partoon B, Lal B, Sabil KM, Shariff AM (2018) Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation. J Nat Gas Sci Eng 55:452–465
Said S, Govindaraj V, Herri JM, Ouabbas Y, Khodja M, Belloum M, Sangwai JS, Nagarajan R (2016) A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the CO2 capture process. J Nat Gas Sci Eng 32:95–108
Arjang S, Manteghian M, Mohammadi A (2013) Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7MPa. Chem Eng Res Des 91:1050–1054
Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H (2017) Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles. Chem Eng Res Des 120:325–332
Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H (2017) Nucleation of ethane hydrate in water containing silver nanoparticles. Mater Des 126:190–196
Kakati H, Mandal A, Laik S (2016) Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation. J Ind Eng Chem 35:357–368
Aliabadi M, Rasoolzadeh A, Esmaeilzadeh F, Alamdari AM (2015) Experimental study of using CuO nanoparticles as a methane hydrate promoter. J Nat Gas Sci Eng 27:1518–1522
Najibi H, Mirzaee Shayegan M, Heidary H (2015) Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. J Nat Gas Sci Eng 23:315–323
Kumar A, Kushwaha OS, Rangsunvigit P, Linga P, Kumar R (2016) Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation. Can J Chem Eng 94:2160–2167
Veluswamy HP, Kumar S, Kumar R, Rangsunvigit P, Linga P (2016) Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage. Fuel 182:907–919
Mech D, Gupta P, Sangwai JS (2016) Kinetics of methane hydrate formation in an aqueous solution of thermodynamic promoters (THF and TBAB) with and without kinetic promoter (SDS). J Nat Gas Sci Eng 35:1519–1534
Kakati H, Mandal A, Laik S (2016) Effect of SDS/THF on thermodynamic and kinetic properties of formation of hydrate from a mixture of gases (CH4+C2H6+C3H8) for storing gas as hydrate. J Energy Chem 25:409–417
Pan Z, Liu Z, Zhang Z, Shang L, Ma S (2018) Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J Nat Gas Sci Eng 56:266–280
Øtergaard KK, Anderson R, Llamedo M, Tohidi B (2002) Hydrate phase equilibria in porous media: Effect of pore size and salinity. Terra Nov 14:307–312
Moroi Y, Matuura R (1988) Thermodynamics of solubilization into surfactant micelles: effect of hydrophobicity of both solubilizate and surfactant molecules. J Colloid Interface Sci 125:456–462
Mandal A, Laik S (2008) Effect of the promoter on gas hydrate formation and dissociation. Energy Fuels 22:2527–2532
Nashed O, Partoon B, Lal B, Sabil KM, Shariff AM (2019) Investigation of functionalized carbon nanotubes’ performance on carbon dioxide hydrate formation. Energy 174:602–610
Choi JW, Chung JT, Kang YT (2014) CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants. Energy 78:869–876
Yang M, Song Y, Jiang L, Zhao Y, Ruan X, Zhang Y, Wang S (2014) Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl Energy 116:26–40
Liu Z, Pan Z, Zhang Z, Liu P, Shang L, Li B (2018) Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy Fuels 32:5736–5749
Pandey JS, Daas YJ, von Solms N (2020) Methane hydrate formation, storage and dissociation behavior in unconsolidated sediments in the presence of environment-friendly promoters
Bui T, Phan A, Monteiro D, Lan Q, Ceglio M, Acosta E, Krishnamurthy P, Striolo A (2017) Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management. Langmuir 33:2263–2274
Sicard F, Bui T, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A (2018) Emergent properties of antiagglomerant films control methane transport: implications for hydrate management. Langmuir 34:9701–9710
Bui T, Sicard F, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A (2018) Antiagglomerants affect gas hydrate growth. J Phys Chem Lett 9:3491–3496
Phan A, Bui T, Acosta E, Krishnamurthy P, Striolo A (2016) Molecular mechanisms responsible for hydrate anti-agglomerant performance. Phys Chem Chem Phys 18:24859–24871
Tokiwa Y, Sakamoto H, Takiue T, Aratono M, Matsubara H (2015) Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture—water interfaces. J Phys Chem B 119:6235–6241
Lei Q, Bain CD (2004) Surfactant-induced surface freezing at the alkane-water interface. Phys Rev Lett 92:2–5
Huo Z, Freer E, Lamar M, Sannigrahi B, Knauss DM, Sloan ED (2001) Hydrate plug prevention by anti-agglomeration. Chem Eng Sci 56:4979–4991
York JD, Firoozabadi A (2009) Effect of brine on hydrate antiagglomeration. Energy Fuels 23:2937–2946
York JD, Firoozabadi A (2008) Alcohol cosurfactants in hydrate antiagglomeration. J Phys Chem B 112:10455–10465
Aman ZM, Haber A, Ling NNA, Thornton A, Johns ML, May EF (2015) Effect of brine salinity on the stability of hydrate-in-oil dispersions and water-in-oil emulsions. Energy Fuels 29:7948–7955
Striolo A, Phan A, Walsh MR (2019) Molecular properties of interfaces relevant for clathrate hydrate agglomeration. Curr Opin Chem Eng 25:57–66
Stern LA, Circone S, Kirby SH, Durham WB (2001) Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B 105:1756–1762
Kang HJ, Yang Y, Ki MS, Shin MS, Choi J, Cha JH, Lee D (2016) A concept study for cost effective NGH mid-stream supply chain establishing strategies. Ocean Eng 113:162–173
Rehder G, Eckl R, Elfgen M, Falenty A, Hamann R, Kähler N, Kuhs WF, Osterkamp H, Windmeier C (2012) Methane hydrate pellet transport using the self-preservation effect: a techno-economic analysis. Energies 5:2499–2523
Zhang G, Rogers RE (2008) Ultra-stability of gas hydrates at 1 atm and 268.2 K. Chem Eng Sci 63:2066–2074
Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187
Kang KC, Linga P, Park KN, Choi SJ, Lee JD (2014) Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl−, SO42−). Desalination 353:84–90
Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD (2011) A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 274 91–96
He T, Nair SK, Babu P, Linga P, Karimi IA (2018) A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. Appl Energy 222:13–24
Li F, Chen Z, Dong H, Shi C, Wang B, Yang L, Ling Z (2018) Promotion effect of graphite on cyclopentane hydrate based desalination. Desalination 445:197–203
Hong S, Moon S, Lee Y, Lee S, Park Y (2019) Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination. Chem Eng J 363:99–106
McAuliffe C (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J Phys Chem 70:1267–1275
Herslund PJ, Thomsen K, Abildskov J, Von Solms N (2014) Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib 375:89–103
Herri JM, Bouchemoua A, Kwaterski M, Brântuas P, Galfré A, Bouillot B, Douzet J, Ouabbas Y, Cameirao A (2014) Amélioration de la sélectivité du captage du CO2 dans les semi-clathrates hydrates en utilisant les ammoniums quaternaires comme promoteurs thermodynamiques. Oil Gas Sci Technol 69:947–968
Ho-Van S, Bouillot B, Douzet J, Babakhani SM, Herri JM (2019) Cyclopentane hydrates-a candidate for desalination? J Environ Chem Eng 7:103359
Erfani A, Varaminian F (2016) Kinetic promotion of non-ionic surfactants on cyclopentane hydrate formation. J Mol Liq 221:963–971
Brown EP, Koh CA (2016) Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties. Phys Chem Chem Phys 18:594–600
Henry D, Gilles B, Jean-Philippe T, Christophe, D, Philippe G (2019) Evaluation of the performance of a new biodegradable AA-LDHI in cyclopentane hydrate and CH4/C3H8 gas hydrate systems. SPE Middle East Oil Gas Show Conf. MEOS, Proc, 2019-March, pp 1–13
Linga P, Kumar R, Englezos P (2007) Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem Eng Sci 62:4268–4276
Kumar R, Linga P, Englezos P (2006) Pre post combustion capture of carbon dioxide via hydrate formation. IEEE EIC Clim Chang Technol Conf EICCCC 2006:1–7
Xu CG, Li X (2014) Sen Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316
Ho LC, Babu P, Kumar R, Linga P (2013) HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane. Energy 63:252–259
da Lirio CFS, Pessoa FLP, Uller AMC (2013) Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF). Chem Eng Sci 96:118–123
Jiang, L. Le, Li AR, Xu JF, Liu YJ (2016) Effects of SDS and SDBS on CO2Hydrate formation, induction time, storage capacity and stability at 274.15 K and 5.0 MPa. Chem Select 1:6111–6114
Yang M, Liu W, Song Y, Ruan X, Wang X, Zhao J, Jiang L, Li Q (2013) Effects of additive mixture (THF/SDS) on the thermodynamic and kinetic properties of CO2/H2 hydrate in porous media. Ind Eng Chem Res 52:4911–4918
Song Y, Wang X, Yang M, Jiang L, Liu Y, Dou B, Zhao J, Wang S (2013) Study of selected factors affecting hydrate-based carbon dioxide separation from simulated fuel gas in porous media. Energy Fuels 27:3341–3348
Pandey JS, von Solms N (2019) Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios. Energies 12:2309
Frankcombe TJ, Kroes GJ (2007) Molecular dynamics simulations of type-sII hydrogen clathrate hydrate close to equilibrium conditions. J Phys Chem C 111:13044–13052
Struzhkin VV, Militzer B, Mao WL, Mao HK, Hemley RJ (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151
Ozaki M, Tomura S, Ohmura R, Mori YH (2014) Comparative study of large-scale hydrogen storage technologies: Is hydrate-based storage at advantage over existing technologies? Int J Hydrogen Energy 39:3327–3341
Trueba AT, Radović IR, Zevenbergen JF, Kroon MC, Peters CJ (2012) Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates. Int J Hydrogen Energy 37:5790–5797
Veluswamy HP, Chin WI, Linga P (2014) Clathrate hydrates for hydrogen storage: The impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. Int J Hydrogen Energy 39:16234–16243
Du J, Wang L, Liang D, Li D (2012) Phase equilibria and dissociation enthalpies of hydrogen semi-clathrate hydrate with tetrabutyl ammonium nitrate. J Chem Eng Data 57:603–609
Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science (80-.) 306:469–471
Veluswamy HP, Linga P (2013) Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int J Hydrogen Energy 38:4587–4596
Alavi S, Ripmeester JA (2007) Hydrogen-gas migration through clathrate hydrate cages. Angew. Chemie—Int. Ed. 46:6102–6105
Okuchi T, Moudrakovski IL, Ripmeester JA (2007) Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate. Appl Phys Lett 91:2005–2008
Kumar R, Klug DD, Ratcliffe CI, Tulk CA, Ripmeester JA (2013) Low-pressure synthesis and characterization of hydrogen-filled ice Ic. Angew Chemie—Int Ed 52:1531–1534
Lu H, Wang J, Liu C, Ratcliffe CI, Becker U, Kumar R, Ripmeester J (2012) Multiple H 2 occupancy of cages of clathrate hydrate under mild conditions. J Am Chem Soc 134:9160–9162
Grim RG, Kerkar PB, Sloan ED, Koh CA, Sum AK (2012) Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching. J Chem Phys 136
Veluswamy HP, Chen JY, Linga P (2015) Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem Eng Sci 126:488–499
Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrogen Energy 34:9173–9180
Veluswamy HP, Hong QW, Linga P (2016) Morphology study of methane hydrate formation and dissociation in the presence of amino acid
Carter BO, Wang W, Adams DJ, Cooper AI (2010) Gas storage in “Dry Water” and “Dry Gel” clathrates. Langmuir 26:3186–3193
Liu Y, Chen B, Chen Y, Zhang S, Guo W, Cai Y, Tan B, Wang W (2015) Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol 3:815–819
Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta—Biomembr 1508:235–251
Campbell JM (1992) Gas conditioning and processing, vol 2. The equipment modules, ISBN 0-9703449-0-2
Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd edn, ISBN 9781420008494
Carroll J (2014) Natural gas hydrates—a guide for engineers, 3rd edn, ISBN 978-0-12-800074-8
Anderson BJ, Tester JW, Borghi GP, Trout BL (2005) Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. J Am Chem Soc 127:17852–17862
Xiao C, Adidharma H (2009) Dual function inhibitors for methane hydrate. Chem Eng Sci 64:1522–1527
Kelland MA, Moi N, Howarth M (2013) Breakthrough in synergists for kinetic hydrate inhibitor polymers, hexaalkylguanidinium salts: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam. Energy Fuels
Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH (2013) Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep 3:1–7
Lee D, Go W, Seo Y (2019) Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids. Energy
Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem
Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry: COSMO-RS Approach. AIChE J
Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an Alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol Eng
Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2
Dickens GR, Quinby-Hunt MS (1997) Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications. J Geophys Res B Solid Earth 102:773–783
Kirkwood JG (1934) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys
Nashed O, Dadebayev D, Khan MS, Bavoh CB, Lal B, Shariff AM (2018) Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. J Mol Liq
Pieroen AP (1955) Gas hydrates—approximate relations between heat of formation, composition and equilibrium temperature lowering by “inhibitors”. Recl des Trav Chim des Pays-Bas 74:995–1002
Partoon B, Wong NMS, Sabil KM, Nasrifar K, Ahmad MR (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilib
Javanmardi J, Moshfeghian M, Maddox RN (1998) Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions. Energy Fuels 12:219–222
Javanmardi J, Moshfeghian M, Maddox RN (2001) An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can J Chem Eng 79:367–373
Bavoh CB, Partoon B, Lal B, Gonfa G, Foo Khor S, Sharif AM (2017) Inhibition effect of amino acids on carbon dioxide hydrate. Chem Eng Sci 171:331–339
Xiao C, Wibisono N, Adidharma H (2010) Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chem Eng Sci 65:3080–3087
Atilhan M, Pala N, Aparicio S (2014) A quantum chemistry study of natural gas hydrates. J Mol Model 20:1–15
Tariq M, Atilhan M, Khraisheh M, Othman E, Castier M, García G, Aparicio S, Tohidi B (2016) Experimental and DFT approach on the determination of natural gas hydrate equilibrium with the use of excess N2 and choline chloride ionic liquid as an inhibitor. Energy Fuels 30:2821–2832
Choudhary N, Das S, Roy S, Kumar R (2016) Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation. Fuel 186:613–622
Mohamed NA, Tariq M, Atilhan M, Khraisheh M, Rooney D, Garcia G, Aparicio S (2017) Investigation of the performance of biocompatible gas hydrate inhibitors via combined experimental and DFT methods. J Chem Thermodyn 111:7–19
Bellucci MA, Walsh MR, Trout BL (2018) Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates 122
Fang B, Ning F, Hu S, Guo D, Ou W, Wang C, Wen J, Sun J, Liu Z, Koh CA (2020) The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study. RSC Adv 10:31027–31038
Bhattacharjee G, Choudhary N, Barmecha V, Kushwaha OS, Pande NK, Chugh P, Roy S, Kumar R (2019) Methane recovery from marine gas hydrates: a bench scale study in presence of low dosage benign additives. Appl Energy 253:113566
Sammalkorpi M, Karttunen M, Haataja M (2007) Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. J Phys Chem B 111:11722–11733
Chun BJ, Choi JIl, Jang SS (2015) Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids Surfaces A Physicochem Eng Asp 474:36–43
Kitabata M, Fujimoto K, Yoshii N, Okazaki S (2016) A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water. J Chem Phys 144:224701
Bresme F, Faraudo J (2004) Computer simulation studies of newton black films. Langmuir 20:5127–5137
Hande VR, Chakrabarty S (2016) Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys Chem Chem Phys 18:21767–21779
Volkov NA, Tuzov NV, Shchekin AK (2016) Molecular dynamics study of salt influence on transport and structural properties of SDS micellar solutions. Fluid Phase Equilib 424:114–121
Poghosyan AH, Arsenyan LH, Gharabekyan HH, Falkenhagen S, Koetz J, Shahinyan AA (2011) Molecular dynamics simulations of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of poly(diallyldimethylammonium chloride) (PDADMAC). J Colloid Interface Sci 358:175–181
Poghosyan AH, Arsenyan LH, Shahinyan AA, Koetz J (2016) Polyethyleneimine loaded inverse SDS micelle in pentanol/toluene media. Colloids Surf A Physicochem Eng Asp 506:402–408
Fujimoto K, Yoshii N, Okazaki S (2012) Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations. J Chem Phys 136:014511
Fujimoto K, Yoshii N, Okazaki S (2012) Molecular dynamics study of free energy of transfer of alcohol and amine from water phase to the micelle by thermodynamic integration method. J Chem Phys 137:094902
Brodskaya EN (2012) Computer simulations of micellar systems. Colloid J 74:154–171
Kinning DJ, Winey KI, Thomas EL (1988) Structural transitions from spherical to nonspherical micelles in blends of poly(styrene-butadiene) diblock copolymer and polystyrene homopolymers. Macromolecules 21:3502–3506
Choudhary N, Hande VR, Roy S, Chakrabarty S, Kumar R (2018) Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: a molecular dynamics study. J Phys Chem B 122:6536–6542
Khurana M, Yin Z, Linga P (2017) A review of clathrate hydrate nucleation. ACS Sustain Chem Eng 5:11176–11203
Walsh MR, Koh CA, Sloan DE, Sum AK, Wu DT (2009) Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science (80-.) 326:1095–1098
Michalis VK, Tsimpanogiannis IN, Stubos AK, Economou IG (2016) Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system. Phys Chem Chem Phys 18:23538–23548
Kumar A, Veluswamy HP, Linga P, Kumar R (2019) Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: implications to energy storage. Fuel 236:1505–1511
Carver TJ, Drew MGB, Rodger PM (1995) Inhibition of crystal growth in methane hydrate. J Chem Soc, Faraday Trans 91:3449–3460
Mehrabian H, Bellucci MA, Walsh MR, Trout BL (2018) Effect of Salt on Antiagglomerant Surface Adsorption in Natural Gas Hydrates. J Phys Chem C 122:12839–12849
Mehrabian H, Walsh MR, Trout BL (2019) In Silico Analysis of the Effect of Alkyl Tail Length on Antiagglomerant Adsorption to Natural Gas Hydrates in Brine. J Phys Chem C 123:17239–17248
Jiménez-Ángeles F, Firoozabadi A (2018) Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates. ACS Cent Sci 4:820–831
Naullage PM, Bertolazzo AA, Molinero V (2019) How do surfactants control the agglomeration of clathrate hydrates?. ACS Cent, Sci
Bavoh CB, Lal B, Nashed O, Khan MS, Keong LK, Bustam MA (2016) COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation. Chinese J. Chem. Eng
Klamt A, Eckert F (2000) COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib 172:43–72
Klamt A, Eckert F, Hornig M, Beck ME, Brger T (2002) Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J Comput Chem 23:275–281
Klamt A (2012) Solvent-screening and co-crystal screening for drug development with COSMO-RS. J Cheminform 4:1–2
Paduszyński K (2017) An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys Chem Chem Phys 19:11835–11850
Xia L, Wang J, Liu S, Li Z, Pan H (2019) Prediction of CO2 solubility in ionic liquids based on multi-model fusion method. Processes 7:258
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pandey, J.S., Karcz, A.P., von Solms, N. (2021). The Role of Surfactants in Gas Hydrate Management. In: Solling, T., Shahzad Kamal, M., Shakil Hussain, S.M. (eds) Surfactants in Upstream E&P. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-70026-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-70026-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70025-6
Online ISBN: 978-3-030-70026-3
eBook Packages: EnergyEnergy (R0)