Skip to main content

New State-of-the-Art Results on ESA’s Messenger Space Mission Benchmark

  • 1076 Accesses

Part of the Transactions on Computational Science and Computational Intelligence book series (TRACOSCI)

Abstract

This contribution presents new state-of-the-art results for ESA’s Messenger space mission benchmark, which is arguably one of the most difficult benchmarks available. The European Space Agency (ESA) created a continuous mid-scale black-box optimization benchmark which resembles an accurate model of NASA’s 2004 launched Messenger interplanetary space probe trajectory. By applying an evolutionary optimization algorithm (MXHPC/MIDACO) that relies on massive parallelization, it is demonstrated that it is possible to robustly solve this benchmark to a near global optimal solution within 1 hour on a computer cluster with 1000 CPU cores. This is a significant improvement over the previously published state-of-the-art results in 2017 where it was demonstrated for the first time that the Messenger benchmark could be solved in a fully automatic way and where it took about 12 h to achieve a near-optimal solution. The here presented results fortify the effectiveness of massively parallelized evolutionary computing for complex real-world problems which have been previously considered intractable.

Keywords

  • Messenger mission
  • Space trajectory
  • Parallelization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Mingcheng Zuo (China Uni. of Geoscience) was able to refine this solution, so it rounds to an objective function value of f(x) = 1.958.

  2. 2.

    From scratch means here that the lower bounds have been used for all test runs. Those test runs therefore aim at exploring the entire search space and are not refinements of previous found solutions.

References

  1. B. Addis, A. Cassioli, M. Locatelli, F. Schoen, Global optimization for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)

    CrossRef  MathSciNet  Google Scholar 

  2. AIST Artificial Intelligence Cloud (AAIC). https://www.airc.aist.go.jp/en/info_details/computer-resources.html (2020)

  3. C. Ampatzis, D. Izzo, Machine learning techniques for approximation of objective functions in trajectory optimisation, in Proceedings of International Conference Artificial Intelligence in Space (IJCAI) (2009)

    Google Scholar 

  4. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in IEEE Congress on Evolutionary Computation, Proceedings (IEEE, 2005), pp. 1769–1776

    Google Scholar 

  5. M. Biazzini, B. Banhelyi, A. Montresor, M. Jelasity, Distributed hyper-heuristics for real parameter optimization, in Proceedings 11th Annual Conference Genetic and Evolutionary Computation (GECCO), pp. 1339–1346 (2009)

    Google Scholar 

  6. F. Biscani, D. Izzo, C.H. Yam, A global optimisation toolbox for massively parallel engineering optimisation, in Proceedings 4th International Conference Astrodynamics Tools and Techniques (ICATT) (2010)

    Google Scholar 

  7. J.M. Bryan, Global optimization of MGA-DSM problems using the Interplanetary Gravity Assist Trajectory Optimizer (IGATO), Master Thesis, California Polytechnic State University (USA) (2011)

    CrossRef  Google Scholar 

  8. G. Danoy, C. Pinto, B. Dorronsoro, P. Bouvry, New state-of-the-art results for cassini2 global trajectory optimization problem. Acta Futura 5, 65–72 (2012)

    Google Scholar 

  9. European Space Agency (ESA) and Advanced Concepts Team (ACT). GTOP database – global optimisation trajectory problems and solutions, archived webpage https://www.esa.int/gsp/ACT/projects/gtop/messenger_full/ (2020)

  10. A.H.G.E. Gad, Space trajectories optimization using variable-chromosome-length genetic algorithms. PhD-Thesis, Michigan Technological University (2011)

    CrossRef  Google Scholar 

  11. GTOPX – Space Mission Benchmark Collection, software available at http://www.midaco-solver.com/index.php/about/benchmarks/gtopx (2020)

  12. A. Gruber, Multi Gravity Assist Optimierung mittels Evolutionsstrategien, BSc-Thesis. Vienna University of Technology (2009)

    Google Scholar 

  13. T.A. Henderson, A Learning Approach To Sampling Optimization: Applications in Astrodynamics, Ph.D.-Theis, Texas A & M University (2013)

    Google Scholar 

  14. Hokaido University High-Performance Intercloud. https://www.hucc.hokudai.ac.jp/en/supercomputer/sc-overview/ (2020)

  15. S.K.M. Islam, S.G.S. Roy, P.N. Suganthan, An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. 42(2), 482–500 (2012)

    CrossRef  Google Scholar 

  16. D. Izzo, 1st ACT global trajectory optimisation competition: Problem description and summary of the results. Acta Astronaut. 61(9), 731–734 (2007)

    CrossRef  Google Scholar 

  17. D. Izzo, Global optimization and space pruning for spacecraft trajectory design, in Spacecraft Trajectory Optimization ed, by B. Conway (Cambridge University Press, 2010), pp. 178–199

    Google Scholar 

  18. A. Lancinskas, J. Zilinskas, P.M. Ortigosa, Investigation of parallel particle swarm optimization algorithm with reduction of the search area, in Proceedings of International Conference Cluster Computing Workshops and Posters (IEEE, 2010)

    Google Scholar 

  19. P. Musegaas, Optimization of Space Trajectories Including Multiple Gravity Assists and Deep Space Maneuvers, MSc Thesis, Delft University of Technology (2012)

    Google Scholar 

  20. M. Schlueter, J.A. Egea, J.R. Banga, Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper Res. 36(7), 2217–2229 (2009)

    CrossRef  MathSciNet  Google Scholar 

  21. M. Schlueter, M. Gerdts, J.J. Rueckmann, A numerical study of MIDACO on 100 MINLP benchmarks. Optimization 61(7), 873–900 (2012)

    CrossRef  MathSciNet  Google Scholar 

  22. M. Schlueter, S. Erb, M. Gerdts, S. Kemble, J.J. Rueckmann, MIDACO on MINLP space applications. Adv. Space Res. 51(7), 1116–1131 (2013)

    CrossRef  Google Scholar 

  23. M. Schlueter, MIDACO software performance on interplanetary trajectory benchmarks. Adv. Space Res. 54(4), 744–754 (2014)

    CrossRef  Google Scholar 

  24. M. Schlueter, M. Wahib, M. Munetomo, Numerical optimization of ESA’s Messenger space mission benchmark, in Proceedings of the Evostar Conference (Springer, Amsterdam, 2017) Apr 19–21, pp. 725–737

    Google Scholar 

  25. R. Shuka, Parallele adaptive Schwarmsuche fuer Blackbox-Probleme. Ph.D.-Thesis, Gottfried Wilhelm Leibniz University Hannover (2018)

    Google Scholar 

  26. G. Stracquadanio, A. La Ferla, M. De Felice, G. Nicosia, Design of robust space trajectories, in Proceedings of 31st International Conference Artificial Intelligence (SGAI) (2011)

    Google Scholar 

  27. M. Ceriotti, M. Vasile, MGA trajectory planning with an ACO-inspired algorithm. Acta Astronaut. 67(9–10), 1202–1217 (2010)

    CrossRef  Google Scholar 

  28. T. Vinko, D. Izzo, Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design, European Space Agency, ACT Tecnical Report. ACT-TNT-MAD-GOHTPPSTD (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schlueter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlueter, M., Wahib, M., Munetomo, M. (2021). New State-of-the-Art Results on ESA’s Messenger Space Mission Benchmark. In: Arabnia, H.R., et al. Advances in Parallel & Distributed Processing, and Applications. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-69984-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69984-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69983-3

  • Online ISBN: 978-3-030-69984-0

  • eBook Packages: Computer ScienceComputer Science (R0)