Skip to main content

Simultaneous Clustering of Multiple Gene Expression Datasets for Pattern Discovery

  • Chapter
  • First Online:
Advances in Artificial Intelligence, Computation, and Data Science

Part of the book series: Computational Biology ((COBO,volume 31))

  • 1076 Accesses

Background

Healthy cells run sophisticated genetic programmes in order to carry out their various biological processes such as cellular growth, cell division, stress response, and metabolism. The regulation of these genetic programmes is realised at different levels by controlling the production of the required types of large biomolecules such as RNAs, proteins, glycans, and lipids, with different amounts, at different times, and in different sub-cellular locations. Although all cells in an organism, such as skin cells, liver cells, bone cells, and neurons nominally have the same genomic material, they differ in shape and function because of the differences in the genetic programmes that they run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Jamous B, Buffa FM, Harris AL, Nandi AK (2017) In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer. Molec Cancer 16:105

    Google Scholar 

  2. Abu-Jamous B, Fa R, Nandi AK (2015) Integrative cluster analysis in bioinformatics, 1st edn. Wiley, Pondicherry

    Google Scholar 

  3. Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2014) Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis. BMC Bioinform 15:322

    Google Scholar 

  4. Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2015) UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets. BMC Bioinform 16:184

    Google Scholar 

  5. Abu-Jamous B, Kelly S (2018) Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome Biol 19(1):172

    PubMed  PubMed Central  Google Scholar 

  6. Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2013) Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery. PLOS One 8(2)

    Google Scholar 

  7. Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2013) Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments. J Royal Soc Interface 10:20120990

    Google Scholar 

  8. Askautrud HA et al (2014) Global gene expression analysis reveals a link between NDRG1 and vesicle transport. PLoS One 9(1):

    PubMed  PubMed Central  Google Scholar 

  9. Athar A et al (2019) ArrayExpress update—from bulk to single-cell expression data. Nucleic Acids Res 47(D1):D711–D715

    CAS  PubMed  Google Scholar 

  10. Bazaga A, Leggate D, Weisser H (2020) Genome-wide investigation of gene-cancer associations for the prediction of novel therapeutic targets in oncology. Sci Rep 10:10787

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Benita Y et al (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37(14):4587–4602

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bester MC, Jacobson D, Bauer FF (2012) Many Saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only Flo protein dependent. G3 (Bethesda) 2(1):131–141.

    Google Scholar 

  13. Boer CGD, Hughes TR (2011) YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucl Acids Res 40(D1):D169–D179

    Google Scholar 

  14. Bosio MC, Negri R, Dieci G (2011) Promoter architectures in the yeast ribosomal expression program. Transcription 2(2):71–77

    PubMed  PubMed Central  Google Scholar 

  15. Buffa FM et al (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Can Res 71(17):5635

    CAS  Google Scholar 

  16. Buffa FM, Harris AL, West CM, Miller CJ (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabassi A, Kirk PDW (2020) Multiple kernel learning for integrative consensus clustering of omic datasets. Bioinformatics (In press)

    Google Scholar 

  18. Camps C et al (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Molec Cancer 13:28

    Google Scholar 

  19. Chaudhary K, Poirion OB, Lu L, Garmire LX (2018) Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 24(6):1248–1259

    CAS  PubMed  Google Scholar 

  20. Cheerla A, Gevaert O (2019) Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35:i446–i454

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen EY et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128

    Google Scholar 

  22. Chen X et al (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508(7494):103–107

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chin SL, Marcus IM, Klevecz RR, Li CM (2012) Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS J 279(6):1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chumnanpuen P, Nookaew I, Nielsen J (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7(Suppl 3):S7

    PubMed  PubMed Central  Google Scholar 

  25. Ciriello G et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Curtis C et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Danila FR et al (2018) Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C4 grasses. J Exp Bot 69(5):1135–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dikicioglu D et al (2011) How yeast re-programmes its transcriptional profile in response to different nutrient impulses. BMC Syst Biol 5:148, 163

    Google Scholar 

  29. Drobna E et al (2012) Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine. FEMS Yeast Res 12:958–968

    CAS  PubMed  Google Scholar 

  30. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95(25):14863–14868

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Elvidge GP et al (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem 281(22):15215–15226

    CAS  PubMed  Google Scholar 

  33. Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    PubMed  PubMed Central  Google Scholar 

  34. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucl Acids Res 30(7):1575–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreira RT et al (2012) Arsenic stress elicits cytosolic Ca(2+) bursts and Crz1 activation in Saccharomyces cerevisiae. Microbiology 158(Pt 9):2293–2302

    CAS  PubMed  Google Scholar 

  36. Foo M et al (2018) A framework for engineering stress resilient plants using genetic feedback control and regulatory network rewiring. ACS Synth Biol 7(6):1553–1564

    CAS  PubMed  Google Scholar 

  37. Ge H et al (2010) Comparative analyses of time-course gene expression profiles of the long-lived sch9Delta mutant. Nucl Acids Res 38(1):143–158

    CAS  PubMed  Google Scholar 

  38. González-Aguilera C et al (2011) Nab2 functions in the metabolism of RNA driven by polymerases II and III. Mol Biol Cell 22(15):2729–2740

    PubMed  PubMed Central  Google Scholar 

  39. Gosset G (2017) Engineering of microorganisms for the production of chemicals and biofuels from renewable resources, 1st edn. Springer International Publishing, Cham

    Google Scholar 

  40. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    CAS  PubMed  Google Scholar 

  41. Harris B, Barberis A, West C, Buffa F (2015) Gene expression signatures as biomarkers of tumour hypoxia. Clin Oncol 27(10):547–560

    CAS  Google Scholar 

  42. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Google Scholar 

  43. Koritzinsky M et al (2013) Two phases of disulfide bond formation have differing requirements for oxygen. J Cell Biol (JCB) 203(4):615–627

    CAS  PubMed  Google Scholar 

  44. Kovacs LAS et al (2012) Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 45(5):669–679

    PubMed Central  Google Scholar 

  45. Krutilina R et al (2014) MicroRNA-18a inhibits hypoxia-inducible factor 1α activity and lung metastasis in basal breast cancers. Breast Cancer Res 16:R78

    PubMed  PubMed Central  Google Scholar 

  46. Kuleshov MV et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl Acids Res 44(W1):W90–W97

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai L-C et al (2011) Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation. PLoS One 6(8):e24375

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Google Scholar 

  49. Lanza AM, Blazeck JJ, Crook NC, Alper HS (2012) Linking yeast Gcn5p catalytic function and gene regulation using a quantitative, graded dominant mutant approach. PLoS One 7(4):e36193

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Larsson M et al (2013) Functional studies of the yeast med5, med15 and med16 mediator tail subunits. PLoS One 8(8):e73137

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JS et al (2010) Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 39(1):71–85

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Z et al (2013) Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae. Appl Environ Microbiol 79(9):2962–2967

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu X et al (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Can Res 70(10):3905–3914

    CAS  Google Scholar 

  54. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. University of California Press, pp 281–297

    Google Scholar 

  55. Matia-González AM, Rodríguez-Gabriel MA (2011) Slt2 MAPK pathway is essential for cell integrity in the presence of arsenate. Yeast 28(1):9–17

    PubMed  Google Scholar 

  56. Miller LD et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. PNAS 102(38):13550–13555

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mole DR et al (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F (2010) The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLOS One 5(8):e12143

    Google Scholar 

  59. Nguyen PA et al (2019) Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat Commun 10:1579

    PubMed  PubMed Central  Google Scholar 

  60. Orlando DA et al (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453:944–947

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ortiz-Barahona A et al (2010) Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucl Acids Res 38(7):2332–2345

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Paraskevopoulou S, Dennis AB, Weithoff G, Tiedemann R (2020) Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci Rep 10:13281

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Parreiras LS, Kohn LM, Anderson JB (2011) Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae. Eukaryot Cell 10(10):1348–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanz AB et al (2012) Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell 23(14):2805–2817

    CAS  PubMed  Google Scholar 

  65. Schneider P et al (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discovery 19:353–364

    CAS  PubMed  Google Scholar 

  66. Schödel J et al (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117(23):e207–e217

    PubMed  PubMed Central  Google Scholar 

  67. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Ann Rev Pathol 9:47–71

    CAS  Google Scholar 

  68. Shen C, Kaelin WGJ (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol 23(1):18–25

    CAS  PubMed  Google Scholar 

  69. Strassburg K et al (2010) Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. OMICS 14(3):249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Suzuki T, Iwahashi Y (2011) Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. J Agric Food Chem 59(13):7145–7154

    CAS  PubMed  Google Scholar 

  71. Suzuki T, Iwahashi Y (2012) Comprehensive gene expression analysis of type B trichothecenes. J Agric Food Chem 60(37):9519–9527

    CAS  PubMed  Google Scholar 

  72. Tang X et al (2012) Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Can Res 72(2):491–502

    CAS  Google Scholar 

  73. Tellaroli P et al (2016) Cross-clustering: A partial clustering algorithm with automatic estimation of the number of clusters. PLoS One 11(3):

    PubMed  PubMed Central  Google Scholar 

  74. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumors. Nature 490(7418):61–70

    PubMed Central  Google Scholar 

  75. Wade SL, Poorey K, Bekiranov S, Auble DT (2009) The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression. EMBO J 28(19):2919–2931

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    CAS  PubMed  Google Scholar 

  77. Xia X, Kung AL (2009) Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 10:R113

    PubMed  PubMed Central  Google Scholar 

  78. Xue-Franzén Y, Henriksson J, Bürglin TR, Wright AP (2013) Distinct roles of the Gcn5 histone acetyltransferase revealed during transient stress-induced reprogramming of the genome. BMC Genom 14:479

    Google Scholar 

  79. Yang J et al (2010) The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Can Res 70(16):6456–6466

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abu-Jamous, B., Nandi, A.K. (2021). Simultaneous Clustering of Multiple Gene Expression Datasets for Pattern Discovery. In: Pham, T.D., Yan, H., Ashraf, M.W., Sjöberg, F. (eds) Advances in Artificial Intelligence, Computation, and Data Science. Computational Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-69951-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69951-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69950-5

  • Online ISBN: 978-3-030-69951-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics