Skip to main content

Learning Biomedical Networks: Toward Data-Informed Clinical Decision and Therapy

  • Chapter
  • First Online:
Advances in Artificial Intelligence, Computation, and Data Science

Part of the book series: Computational Biology ((COBO,volume 31))

  • 1076 Accesses

Abstract

Precision medicine has emerged to tailor clinical decisions based on patient genetic features in a personalized healthcare perspective. The ultimate goal is to drive disease diagnosis and treatment selection based on the patient molecular profiles, usually given by large volumes of data, which is intrinsically high-dimensional, heterogeneous, noisy, and incomplete. Along with the notable improvement of experimental technologies, statistical learning has accompanied the associated challenges by the significant development of novel methods and algorithms. In particular, network-based learning is providing promising results toward more personalized medicine. This short survey will describe three main interconnected trends identified to address these challenges and all with a firm root in network science: differential network analysis, network-based regularization, and causal discovery and inference. An overview of the main applications is provided, along with available software. Biomedical networks support more informed and interpretable statistical learning models from patients’ data, thus improving clinical decisions and supporting therapy optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, Merico D, Bader G (2019) Nat Protoc 14:482

    Google Scholar 

  2. Hawe J, Theis F, Heinig M (2019) Front Genet 10:55

    Google Scholar 

  3. Manzoni C, Kia D, Vandrovcova J, Hardy J, Wood N, Lewis P, Ferrari R (2018) Brief Bioinform 19(2):286

    CAS  PubMed  Google Scholar 

  4. Singer J, Irmisch A, Ruscheweyh HJ, Singer F, Toussaint N, Levesque M, Stekhoven D, Beerenwinkel N (2019) Brief Bioinform 20(3):778

    Google Scholar 

  5. Zhang W, Chien J, Yong J, Kuang R (2017) npj Precis Oncol 1(1):25. https://doi.org/10.1038/s41698-017-0029-7

  6. Ha M, Baladandayuthapani V, Do KA (2015) Bioinformatics 31(21):3413

    Google Scholar 

  7. Fuente A (2010) Trends Genet 26(7):326

    Google Scholar 

  8. Zhang XF, Ou-Yang L, Zhao XM, Yan H (2016) Nat Sci Rep 6:34112

    Google Scholar 

  9. Zuo Y, Cui Y, Poto C, Varghese R, Yu G, Li R, Ressom H (2016) Methods 111:12

    Google Scholar 

  10. Class C, Ha M, Baladandayuthapani V, Do KA (2018) Bioinformatics 34(7):1243

    Google Scholar 

  11. Kim Y, Hao J, Mersha YGT, Kang M (2018) Int J Data Min Bioinform 20(4):362

    Google Scholar 

  12. Hastie T, Tibshirani R, Wainwright M (2015) Statistical learning with sparsity: the lasso and generalizations. Chapman & Hall/CRC

    Google Scholar 

  13. Tibshirani R (1996) J R Stat Soc Ser B 58(1):267

    Google Scholar 

  14. Zou H, Hastie T (2005) J Roy Stat Soc Ser B 67(2):301

    Google Scholar 

  15. Yuan M, Lin Y (2006) J R Stat Soc Ser B 68(1):49

    Google Scholar 

  16. Hoefling H (2010) J Comput Graph Stat 19(4):984

    Google Scholar 

  17. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) J R Stat Soc Ser B 67:91

    Google Scholar 

  18. Vinga S (2020) Brief Bioinform. https://doi.org/10.1093/bib/bbaa122

  19. Chung F (1997) Spectral graph theory, vol 92. American mathematical society

    Google Scholar 

  20. Friedman J, Hastie T, Tibshirani R (2008) Biostatistics 9:432

    Google Scholar 

  21. Li L, Li H (2008) Bioinformatics 24(8):1175

    CAS  PubMed  Google Scholar 

  22. Zhang W, Ota T, Shridhar V, Chien J, Wu B, Kuang R (2013) PLoS Comput Biol 9:e1002975

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Danaher P, Wang P, Witten D (2014) J R Stat Soc Ser B (Stat Methodol) 76(2):373

    Google Scholar 

  24. Xie L, Varathan P, Nho K, Saykin A, Salama P, Yan J (2020) PLoS One 15(6):e0234748

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Veríssimo A, Oliveira A, Sagot MF, Vinga S (2016) J R Stat Soc Ser B 77:449

    Google Scholar 

  26. Lopes M, Casimiro S, Vinga S (2019) BMC Bioinform 20(1):356

    Google Scholar 

  27. Lopes M, Vinga S (2020) BMC Bioinform 21:59

    Google Scholar 

  28. Peixoto C, Martins MLM, Costa L, Vinga S (2020) Biomedicines 8:488

    Google Scholar 

  29. Li Y, Mark B, Raskutti G, Willett R, Song H, Neiman D (2019). arXiv:1803.07658v3

  30. Kleinberg S, Hripcsak G (2011) J Biomed Inform 44(6):1102

    Google Scholar 

  31. Schölkopf B (2020). arXiv:1911.10500v2

  32. Bühlmann P (2018) Invariance, causality and robustness

    Google Scholar 

  33. Pearl J (2009) Causalaity. Cambridge University Press, Cambridge

    Google Scholar 

  34. Glymour KZC, Spirtes P (2019) Front Genet 10:254

    Google Scholar 

  35. Yu Y, Chen J, Gao T, Yu M (2020). arXiv:1904.10098v1

  36. Spirtes P, Glymour C, Scheines R (2000) 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  37. Bühlmann P, Kalisch M, Maathuis M (2010) Biometrika 97(2):261

    Google Scholar 

  38. Colombo D, Maathuis M (2014) J Mach Learn Res 15:3921

    Google Scholar 

  39. Spirtes P, Meek C, Richardson T (1995) Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (UAI) pp. 499–506

    Google Scholar 

  40. Spirtes P, Glymour C, Scheines R, Kauffman S, Aimale V, Wimberly F (2000)

    Google Scholar 

  41. Claassen T, Mooij JM, Heskes T (2013) Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence. AUAI Press, Arlington, Virginia, USA. UAI’13, pp 172–181

    Google Scholar 

  42. Colombo D, Maathuis M, Kalisch M, Richardson T (2012) Ann Stat 40(1):294

    Google Scholar 

  43. Chickering D (2003) J Mach Learn Res 3:507

    Google Scholar 

  44. Hauser A, Bühlmann P (2012) J Mach Learn Res 13:2409

    Google Scholar 

  45. Silander T, Myllymäki P (2006) Proceedings of the twenty-second conference on uncertainty in artificial intelligence, AUAI Press, Arlington, Virginia, USA. UAI’06, pp 445–452

    Google Scholar 

  46. Ogarrio J, Spirtes P, Ramsey J (2016) Proceedings of the eighth international conference on probabilistic graphical models 52:368

    Google Scholar 

  47. Raskutti G, Wang Y, Uhler C (2019) Learning directed acyclic graphs based on sparsest permutations

    Google Scholar 

  48. Solus L, Wang Y, Uhler C (2020) Consistency guarantees for greedy permutation-based causal inference algorithms

    Google Scholar 

  49. Belyaeva A, Cammarata L, Radhakrishnan A, Squires C, Yang K, Shivashankar G, Uhler C (2020) Causal network models of sars-cov-2 expression and aging to identify candidates for drug repurposing

    Google Scholar 

  50. Squires C, Wang Y, Uhler C (2020) (PMLR, Virtual, 2020). Proceedings of machine learning research 124:1039–1048

    Google Scholar 

  51. Bernstein D, Saeed B, Squires C, Uhler C (2020) (PMLR, 2020). Proceedings of machine learning research 108:4098–4108

    Google Scholar 

  52. Maathuis M, Kalisch M, Bühlmann P (2009) Ann Stat 37:3133

    Google Scholar 

  53. Le T, Liu L, Tsykin A, Goodall G, Liu B, Sun BY, Li J (2013) J Mach Learn Res 29(6):765

    CAS  Google Scholar 

  54. Maathuis M, Colombo D, Kalisch M, Bühlmann P (2010) Nat Methods 7:247

    CAS  PubMed  Google Scholar 

  55. Maddox W (2017) Discussions 13(1):329

    Google Scholar 

  56. Nandy P, Maathuis M, Richardson T (2017) Ann Stat 45(2):647

    Google Scholar 

  57. Stekhoven D, Moraes I, Sveinbjörnsson G, Hennig L, Maathuis M, Bühlmann P (2012) Bioinformatics 28(21):2819

    CAS  PubMed  Google Scholar 

  58. Meinshausen N, Bühlmann P (2010) J R Stat Soc Ser B 72:417

    Google Scholar 

  59. Belyaeva A, Squires C, Uhler C (2020) bioRxiv. https://doi.org/10.1101/2020.05.13.093765

  60. shimizu S, Hoyer P, Hyvärinen A, Kerminen A (2006) J Mach Learn Res 7:2003

    Google Scholar 

  61. Hoyer P, Janzing D, Mooij JM, Peters J, Schölkopf B (2009) Advances in neural information processing systems. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) vol 21. Curran Associates, Inc, pp 689–696

    Google Scholar 

  62. Zhang K, Hyvärinen A (2009) Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press, pp 647–655

    Google Scholar 

  63. Peters J, Meinshausen PBN (2016) J R Stat Soc Ser B 785:947

    Google Scholar 

  64. Didelez V, Sheehan N (2007) Stat Methods Med Res 16:309

    PubMed  Google Scholar 

  65. Badsha B, Fu A (2019) Front Genet 10

    Google Scholar 

  66. Auerbach J, Howey R, Jiang L, Justice A, Li L, Oualkacha K, Sayols-Baixeras S, Aslibekyan S (2018) BMC Genet 19(Suppl 1):74

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dean Kanazawa (1989) Comput Intell 5(3):142

    Google Scholar 

  68. Zou M, Conzen S (2005) Bioinformatics 21(1):71

    CAS  PubMed  Google Scholar 

  69. Gong M, Zhang K, Schölkopf B, Glymour C, Tao D (2017) Proceedings conference on uncertainty in artificial intelligence (UAI) 2017. Association for Uncertainty in Artificial Intelligence (AUAI), p. ID 269

    Google Scholar 

  70. Gong M, Zhang K, Schölkopf B, Tao D, Geiger DP (2015) Proceedings of the 32th international conference on machine learning (ICML 2015) 37:1898

    Google Scholar 

  71. Granger C (1980) J Econ Dyn Control 2:329

    Google Scholar 

  72. Granger C (1969) Econometrica 373:424

    Google Scholar 

  73. Shojaie A, Michailidis G (2010) Bioinformatics 26:i517

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lozano A, Abe N, Liu Y, Rosset S (2009) Bioinformatics 25:i110

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang G, Wang L, Wang X (2017) Sci Rep 7:2991

    PubMed  PubMed Central  Google Scholar 

  76. Saeed B, Belyaeva A, Wang Y, Uhler C (2020) (PMLR, Virtual, 2020). Proc Mach Learn Res 124:619–628

    Google Scholar 

  77. Zhang K, Gong M, Ramsey J, Batmanghelich K, Spirtes P, Glymour C (2017) UAI 2917 workshop on causality: lenarning, inference, and decision-making

    Google Scholar 

  78. Tu R, Zhang C, Ackermann P, Mohan K, Kjellström H, Zhang K (2019) Proceedings of the 22nd international conference on artificial intelligence and statistics (AISTATS)

    Google Scholar 

  79. Strobl V, Visweswaran S, Spirtes P (2017) Int J Data Sci Anal 6:47

    Google Scholar 

  80. Praxitelous P, Edman G, Ackermann P (2018) Scand J Med Sci Sports 28(1):294

    CAS  PubMed  Google Scholar 

  81. Hamesse C, Tu R, Ackermann P, Kjellström H, Zhang C (2019) (PMLR, 2019). Proc Mach Learn Res 106:614–640

    Google Scholar 

  82. Verissimo A, Carrasquinha E, Lopes M, Oliveira A, Sagot MF, Vinga S (2018) bioRxiv

    Google Scholar 

  83. Verissimo A, Vinga S, Carrasquinha E, Lopes M (2018) Bioconductor R package version 3.11

    Google Scholar 

  84. Friedman J, Hastie T, Tibshirani R, Narasimhan B, Tay K, Simon N (2020) R package version 4.0-2

    Google Scholar 

  85. Friedman J, Hastie T, Tibshirani R (2019) R package version 1:11

    Google Scholar 

  86. Epskamp S, Borsboom D, Fried E (2017) Behavior research methods

    Google Scholar 

  87. van Borkulo CD, Boschloo L, Kossakowski JJ, Tio P, Schoevers RA, Borsboom D, Waldorp LJ (2017) J Stat Softw

    Google Scholar 

  88. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D (2012) J Stat Softw 48(4):1

    Google Scholar 

  89. Csardi G, Nepusz T (2006) InterJ Complex Syst, p 1695

    Google Scholar 

  90. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Genome Res 13(11):2498

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McGuffin M, Xie W, Devani B, van Toch I, Jurisica I (2009) Bioinformatics 25(24):3327

    PubMed  PubMed Central  Google Scholar 

  92. Jang Y, Yu N, Seo J, Kim S, Lee S (2016) Biol Direct 11:10

    PubMed  PubMed Central  Google Scholar 

  93. Yang Y, Sui Y, Xie B, Qu H, Fang X (2019) Genomics Proteomics Bioinform 17(4):465

    Google Scholar 

  94. amd KH, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2020) R package version 2.34.0

    Google Scholar 

  95. Bastian M, Heymann S, Jacomy M (2009)

    Google Scholar 

  96. Heinze-Deml C, Peters J, Meinshausen N (2018) J Causal Inference 6:20170016

    Google Scholar 

  97. Pfister N, Bühlmann P, Peters J (2018) J Am Stat Assoc 114(527):1264

    Google Scholar 

  98. Yavorska O, Burgess S (2017) Int J Epidemiol 46(6):1734

    PubMed  PubMed Central  Google Scholar 

  99. Kalisch M, Mächler M, Colombo D, Maathuis M, Bühlmann P (2012) J Stat Softw 47(11):1

    Google Scholar 

  100. Le T, Hoang T, Li J, Liu L, Hu S (2000) J Mach Learn Res, pp 1–48

    Google Scholar 

  101. Scutari M (2010) J Stat Softw 35(3):1

    Google Scholar 

  102. Spirtes P, Glymour C, Scheines R (1998) Multivar Behav Res 31(1):65

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by national funds through the Portuguese Foundation for Science & Technology (FCT) with references CEECINST/00102/2018, PTDC/CCI-BIO/4180/2020, DSAIPA/DS/0026/2019, UIDB/00297/2020 (CMA), UIDB/04516/2020 (NOVA LINCS), and UIDB/50021/2020 (INESC-ID), and by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 951970 (OLISSIPO project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Vinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes, M.B., Vinga, S. (2021). Learning Biomedical Networks: Toward Data-Informed Clinical Decision and Therapy. In: Pham, T.D., Yan, H., Ashraf, M.W., Sjöberg, F. (eds) Advances in Artificial Intelligence, Computation, and Data Science. Computational Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-69951-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69951-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69950-5

  • Online ISBN: 978-3-030-69951-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics