Skip to main content

Resting-State EEG Sex Classification Using Selected Brain Connectivity Representation

  • Chapter
  • First Online:
Advances in Artificial Intelligence, Computation, and Data Science

Part of the book series: Computational Biology ((COBO,volume 31))

  • 1120 Accesses

Abstract

Electroencephalography (EEG) is a widely used non-invasive technique to measure multi-channel potentials that reflect the electrical activity of the brain. Over the last few decades, EEG analysis has been an intensively explored research topic due to its potentials in being applied to the diagnosis of neurological diseases, such as epilepsy, brain tumors, head injury, sleep disorders, and dementia [19]. Despite many advances made in recent years, EEG signal analysis remains a challenging task. In addition to being non-stationary, EEG signals often have high noise-to-information ratios, and they can be significantly affected by various artifacts, demonstrating characteristics that differ from signals generated by activities in the brain [21]. Common artifacts include eye movements, jaw tension, and muscle contractions. To make effective signal analysis even more challenging, EEG signals are highly individual-specific, and cross-subject pattern identification can be elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available from https://mne.tools/stable/generated/mne.connectivity.spectral_connectivity.html.

References

  1. Baltazar CA, Machado BS, de Faria DD, Paulo AJM, Silva SMCA, Ferraz HB, de Carvalho Aguiar P (2020) Brain connectivity in patients with dystonia during motor tasks. J Neural Eng 17(5):056039

    Google Scholar 

  2. Beste C, Heil M, Konrad C (2010) Individual differences in erps during mental rotation of characters: lateralization, and performance level. Brain Cogn 72(2):238–243

    Article  PubMed  Google Scholar 

  3. Carrier J, Land S, Buysse DJ, Kupfer DJ, Monk TH (2001) The effects of age and sex on sleep eeg power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 38(2):232–42

    Article  CAS  PubMed  Google Scholar 

  4. Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2001) Age and sex effects in the eeg: development of the normal child. Clin Neurophysiol 112(5):806–814

    Google Scholar 

  5. Davidson RJ, Schwartz GE, Pugash E, Bromfield E (1976) Sex differences in patterns of eeg asymmetry. Biol Psychol 4(2):119–137

    Article  CAS  PubMed  Google Scholar 

  6. Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M (2013) Meg and eeg data analysis with mne-python. Front Neurosci 7:267

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hirnstein M, Hugdahl K, Hausmann M (2019) Cognitive sex differences and hemispheric asymmetry: a critical review of 40 years of research. Laterality 24(2):204–252 PMID: 29985109

    Article  PubMed  Google Scholar 

  8. Höller Y, Bergmann J, Thomschewski A, Kronbichler M et al (2013) Comparison of eeg-features and classification methods for motor imagery in patients with disorders of consciousness. PLoS One 8(11):e80479

    Google Scholar 

  9. Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, Hakonarson H, Gur RE, Gur RC, Verma R (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci 111(2):823–828

    Article  CAS  PubMed  Google Scholar 

  10. La Rocca D, Campisi P, Végső B, Cserti P, Kozmann G, Babiloni F, De Vico Fallani F (2014) Human brain distinctiveness based on eeg spectral coherence connectivity. IEEE Trans Bio-med Eng 61:2406–2412

    Google Scholar 

  11. Li J, Deng JD, Ridder DD, Adhia D (2020) Gender classification of EEG signals using a motif attribute classification ensemble. In: 2020 international joint conference on neural networks, IJCNN 2020, Glasgow, United Kingdom, July 19–24, 2020. IEEE, pp 1–8

    Google Scholar 

  12. Lotte F, Congedo M, Lécuyer A, Fabrice L, Arnaldi B (2007) A review of classification algorithms for eeg-based brain-computer interfaces. J Neural Eng 4:07

    Article  Google Scholar 

  13. Markovic A, Kaess M, Tarokh L (2020) Gender differences in adolescent sleep neurophysiology: a high-density sleep eeg study. Sci Reports 10:15935

    Google Scholar 

  14. Mumtaz W, Ali SS, Yasin MAM, Malik A (2017) A machine learning framework involving eeg-based functional connectivity to diagnose major depressive disorder (mdd). Med Biol Eng 56:233–246

    Google Scholar 

  15. Murias M, Webb SJ, Greenson J, Dawson G (2007) Resting state cortical connectivity reflected in eeg coherence in individuals with autism. Biol Psychiatry 62(3):270–273. Mechanisms of Circuit Dysfunction in Neurodevelopmental Disorders

    Google Scholar 

  16. Papousek I, Murhammer D, Schulter G (2011) Intra- and interindividual differences in lateralized cognitive performance and asymmetrical EEG activity in the frontal cortex. Brain Cogn 75(3):225–231

    Google Scholar 

  17. Scott WC, Kaiser D, Othmer S, Sideroff SI (2005) Effects of an eeg biofeedback protocol on a mixed substance abusing population. Am J Drug Alcohol Abuse 31(3):455–69

    Article  PubMed  Google Scholar 

  18. Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee H-N (2015) Noise robustness analysis of sparse representation based classification method for non-stationary eeg signal classification. Biomed Signal Process Control 21:8–8

    Google Scholar 

  19. Puthankattil Subha D, Joseph PK, Rajendra AU, Lim CM (2010) Eeg signal analysis: a survey. J Med Syst 34(2):195–212

    Google Scholar 

  20. van Putten M, Olbrich S, Arns M (2018) Predicting sex from brain rhythms with deep learning. Sci Rep 8:12

    Google Scholar 

  21. Vanneste S, Song J, De Ridder D (2018) Thalamocortical dysrhythmia detected by machine learning. Nature Commun 9:1103

    Article  Google Scholar 

  22. Zhang J, Xu H, Zhu L, Kong W, Ma Z (2019) Gender recognition in emotion perception using eeg features. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 2883–2887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah D. Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Deng, J.D., Adhia, D., De Ridder, D. (2021). Resting-State EEG Sex Classification Using Selected Brain Connectivity Representation. In: Pham, T.D., Yan, H., Ashraf, M.W., Sjöberg, F. (eds) Advances in Artificial Intelligence, Computation, and Data Science. Computational Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-69951-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69951-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69950-5

  • Online ISBN: 978-3-030-69951-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics