Skip to main content

Radiation Therapy in the Management of a Pancreatic Cancer

  • Chapter
  • First Online:
Imaging Diagnostics in Pancreatic Cancer

Part of the book series: Clinical Gastroenterology ((CG))

  • 357 Accesses

Abstract

Technological advances in imaging, including improvements in computed tomography, magnetic resonance, and endoscopic ultrasound, have been paralleled by improvements in delivery of radiation. These advances have led to a significant number of changes to the approach for the utilization of radiation, in terms of treatment volumes, radiation dose, and fraction number. Incorporation of radiation requires careful consideration by a multi-disciplinary team and often necessitates placement of fiducials, typically performed under EUS guidance, due to target ambiguity with kV imaging at the time of treatment. In this chapter, we will review the indications for radiation, which is largely determined by imaging performed at diagnosis, as well as the role of various imaging modalities and fiducials in the treatment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlander N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review 1975–2014 National Cancer Institute. Natl Cancer Institute. 2017:1–39. https://seer.cancer.gov/csr/1975_2014/.

  2. Oettle H, Post S, Neuhaus P, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer. JAMA. 2007;297(3):267. https://doi.org/10.1001/jama.297.3.267.

    Article  CAS  PubMed  Google Scholar 

  3. Regine WF, Winter KA, Abrams R, et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. intergroup/RTOG 9704 phase III trial. Ann Surg Oncol. 2011;18(5):1319–26. https://doi.org/10.1245/s10434-011-1630-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27(11):1806–13. https://doi.org/10.1200/JCO.2008.17.7188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng T-Y, Sheth K, White RR, et al. Effect of neoadjuvant chemoradiation on operative mortality and morbidity for pancreaticoduodenectomy. Ann Surg Oncol. 2006;13(1):66–74. https://doi.org/10.1245/ASO.2006.02.003.

    Article  PubMed  Google Scholar 

  6. Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395–406. https://doi.org/10.1056/nejmoa1809775.

    Article  CAS  PubMed  Google Scholar 

  7. Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24. https://doi.org/10.1016/S0140-6736(16)32409-6.

    Article  CAS  PubMed  Google Scholar 

  8. Miller AR, Pisters PWT, Lee JE, Janjan NA, Abbruzzese JL, Evans DB. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Hepato-Gastroenterology. 1998;45(21):624–33. https://doi.org/10.1001/archsurg.1992.01420110083017.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman JP, Lipsitz S, Pisansky T, Weese JL, Solin L, Benson AB. Phase II trial of preoperative radiation therapy and chemotherapy for patients with localized, resectable adenocarcinoma of the pancreas: an Eastern Cooperative Oncology Group Study. J Clin Oncol. 1998;16(1):317–23. https://doi.org/10.1200/JCO.1998.16.1.317.

    Article  CAS  PubMed  Google Scholar 

  10. Talamonti MS, Small W, Mulcahy MF, et al. A multi-institutional phase II trial of preoperative full-dose gemcitabine and concurrent radiation for patients with potentially resectable pancreatic carcinoma. Ann Surg Oncol. 2006;13(2):150–8. https://doi.org/10.1245/ASO.2006.03.039.

    Article  PubMed  Google Scholar 

  11. Versteijne E, Suker M, Punt CJA, et al. Preoperative chemoradiotherapy potentially improves outcome for (borderline) resectable pancreatic cancer: preliminary results of the Dutch randomized phase III PREOPANC trial. Int J Radiat Oncol Biol Phys. 2018;102(5):1606–7. https://doi.org/10.1016/j.ijrobp.2018.08.055.

    Article  Google Scholar 

  12. Katz MHG, Pisters PWT, Evans DB, et al. Borderline resectable pancreatic cancer: the importance of this emerging stage of disease. J Am Coll Surg. 2008;206(5):833–46. https://doi.org/10.1016/J.JAMCOLLSURG.2007.12.020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shaib WL, Hawk N, Cassidy RJ, et al. A phase 1 study of stereotactic body radiation therapy dose escalation for borderline resectable pancreatic cancer after modified FOLFIRINOX (NCT01446458). Int J Radiat Oncol Biol Phys. 2016;96(2):296–303. https://doi.org/10.1016/j.ijrobp.2016.05.010.

    Article  PubMed  Google Scholar 

  14. Trede M, Schwall G, Saeger HD. Survival after pancreatoduodenectomy: 118 consecutive resections without an operative mortality. Ann Surg. 1990;211(4):447–58. https://doi.org/10.1097/00000658-199004000-00011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geer RJ, Brennan MF. Prognostic indicators for survival after resection of pancreatic adenocarcinoma. Am J Surg. 1993;165(1):68–73. https://doi.org/10.1016/S0002-9610(05)80406-4.

    Article  CAS  PubMed  Google Scholar 

  16. Lim JE, Chien MW, Earle CC. Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg. 2003;237(1):74. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513971/. Accessed 11 July 2019.

    Article  Google Scholar 

  17. Al-Hawary M, Behrman SW, Benson III AB, et al. Cassadie Moravek ¥ Pancreatic Cancer Action Network Continue NCCN Guidelines Version 2.2019 Pancreatic Adenocarcinoma NCCN Evidence Blocks TM NCCN Pancreatic Adenocarcinoma Panel Members NCCN Evidence Blocks Definitions (EB-1). 2019. www.nccn.org/patients.

  18. Neoptolemos JP, Stocken DD, Bassi C, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304(10):1073–81. https://doi.org/10.1001/jama.2010.1275.

    Article  CAS  PubMed  Google Scholar 

  19. Kalser MH, Ellenberg SS. Pancreatic cancer: adjuvant combined radiation and chemotherapy following curative resection. Arch Surg. 1985;120(8):899–903. https://doi.org/10.1001/archsurg.1985.01390320023003. http://www.ncbi.nlm.nih.gov/pubmed/4015380. Accessed 2 June 2019.

    Article  CAS  PubMed  Google Scholar 

  20. Klinkenbijl JH, Jeekel J, Sahmoud T, et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region. Ann Surg. 1999;230(6):776. https://doi.org/10.1097/00000658-199912000-00006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smeenk HG, Van Eijck CHJ, Hop WC, et al. Long-term survival and metastatic pattern of pancreatic and periampullary cancer after adjuvant chemoradiation or observation: long-term results of EORTC trial 40891. Ann Surg. 2007;246(5):734–40. https://doi.org/10.1097/SLA.0b013e318156eef3.

    Article  PubMed  Google Scholar 

  22. Neoptolemos JP, Dunn JA, Stocken DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet (London, England). 2001;358(9293):1576–85. https://doi.org/10.1016/s0140-6736(01)06651-x.

    Article  CAS  Google Scholar 

  23. Regine WF, Winter KA, Abrams RA, et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma. JAMA. 2008;299(9):1019. https://doi.org/10.1001/jama.299.9.1019.

    Article  CAS  PubMed  Google Scholar 

  24. NCT01013649. Gemcitabine hydrochloride with or without erlotinib hydrochloride followed by the same chemotherapy regimen with or without radiation therapy and capecitabine or fluorouracil in treating patients with pancreatic cancer that has been removed by surgery. Https://clinicaltrials.gov/show/nct01013649. 2009. https://clinicaltrials.gov/ct2/show/NCT01013649?term=RTOG+0848&rank=1. Accessed 11 July 2019.

  25. Von Hoff DD, Ramanathan RK, Ervin T, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013; https://doi.org/10.1056/NEJMoa1304369.

  26. Regine WF, Winter K, Abrams RA, et al. Postresection CA19-9 and margin status as predictors of recurrence after adjuvant treatment for pancreatic carcinoma: analysis of NRG oncology RTOG trial 9704. Adv Radiat Oncol. 2018;3(2):154–62. https://doi.org/10.1016/j.adro.2018.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moertel CG, Frytak S, Hahn RG, et al. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil. The gastrointestinal tumor study group. Cancer. 1981;48(8):1705–10. https://doi.org/10.1002/1097-0142(19811015)48:8<1705::AID-CNCR2820480803>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  28. Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. J Natl Cancer Inst. 1988. https://doi.org/10.1093/jnci/80.10.751

  29. Burris HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first- line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403–13. https://doi.org/10.1200/JCO.1997.15.6.2403.

    Article  CAS  PubMed  Google Scholar 

  30. Li C-P, Chao Y, Chi K-H, et al. Concurrent chemoradiotherapy treatment of locally advanced pancreatic cancer: gemcitabine versus 5-fluorouracil, a randomized controlled study. Int J Radiat Oncol Biol Phys. 2003;57(1):98–104. https://doi.org/10.1016/s0360-3016(03)00435-8.

    Article  CAS  PubMed  Google Scholar 

  31. Hammel P, Huguet F, Van Laethem JL, et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib the LAP07 randomized clinical trial. JAMA. 2016. https://doi.org/10.1001/jama.2016.4324.

  32. Hammel P, Huguet F, Van Laethem JL, et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib the LAP07 randomized clinical trial. JAMA. 2016;315(17):1844–53. https://doi.org/10.1001/jama.2016.4324.

    Article  CAS  PubMed  Google Scholar 

  33. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/nejmoa1011923.

    Article  CAS  PubMed  Google Scholar 

  34. Brown JM, Koong AC. High-dose single-fraction radiotherapy: exploiting a new biology? Int J Radiat Oncol Biol Phys. 2008;71(2):324–5. https://doi.org/10.1016/j.ijrobp.2008.02.003.

    Article  PubMed  Google Scholar 

  35. de Geus SWL, Eskander MF, Kasumova GG, et al. Stereotactic body radiotherapy for unresected pancreatic cancer: a nationwide review. Cancer. 2017;123(21):4158–67. https://doi.org/10.1002/cncr.30856.

    Article  CAS  PubMed  Google Scholar 

  36. Kincaid RE Jr, Hertanto AE, Hu Y-C, et al. Evaluation of respiratory motion-corrected cone-beam CT at end expiration in abdominal radiotherapy sites: a prospective study. Acta Oncol. 2018;57(8):1017–24. https://doi.org/10.1080/0284186X.2018.1427885.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van der Geld YG, van Triest B, Verbakel WFAR, et al. Evaluation of four-dimensional computed tomography-based intensity-modulated and respiratory-gated radiotherapy techniques for pancreatic carcinoma. Int J Radiat Oncol Biol Phys. 2008;72(4):1215–20. https://doi.org/10.1016/j.ijrobp.2008.07.010.

    Article  PubMed  Google Scholar 

  38. Kataria T, Rawat S, Sinha SN, et al. Intensity modulated radiotherapy in abdominal malignancies: our experience in reducing the dose to normal structures as compared to the gross tumor. J Cancer Res Ther. 2006;2(4):161–5. http://www.ncbi.nlm.nih.gov/pubmed/17998698. Accessed 2 June 2019.

    Article  Google Scholar 

  39. Brown MW, Ning H, Arora B, et al. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma. Int J Radiat Oncol Biol Phys. 2006;65(1):274–83. https://doi.org/10.1016/j.ijrobp.2006.01.003.

    Article  PubMed  Google Scholar 

  40. Landry JC, Yang GY, Ting JY, et al. Treatment of pancreatic cancer tumors with intensity-modulated radiation therapy (IMRT) using the volume at risk approach (VARA): employing dose-volume histogram (DVH) and normal tissue complication probability (NTCP) to evaluate small bowel toxicity. Med Dosim. 2002;27(2):121–9. https://doi.org/10.1016/S0958-3947(02)00094-8.

    Article  PubMed  Google Scholar 

  41. Yovino S, Poppe M, Jabbour S, et al. Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers. Int J Radiat Oncol Biol Phys. 2011;79(1):158–62. https://doi.org/10.1016/j.ijrobp.2009.10.043.

    Article  PubMed  Google Scholar 

  42. Tunceroglu A, Park JH, Balasubramanian S, et al. Dose-painted intensity modulated radiation therapy improves local control for locally advanced pancreas cancer. ISRN Oncol. 2012;2012:1–7. https://doi.org/10.5402/2012/572342.

    Article  Google Scholar 

  43. Thompson RF, Mayekar SU, Zhai H, et al. A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas. Med Phys. 2014;41(8):081711. https://doi.org/10.1118/1.4887797.

    Article  PubMed  Google Scholar 

  44. Nichols RC. Radiation therapy for pancreatic cancer. In: Pancreatic masses: advances in diagnosis and therapy, vol. 7; 2016. p. 237–49. https://doi.org/10.1007/978-3-319-19677-0_18.

    Chapter  Google Scholar 

  45. Ding X, Dionisi F, Tang S, et al. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated. Med Dosim. 2014;39(2):139–45. https://doi.org/10.1016/j.meddos.2013.11.005.

    Article  PubMed  Google Scholar 

  46. Fuss M, Wong A, Fuller CD, et al. Image-guided intensity-modulated radiotherapy for pancreatic carcinoma. Gastrointest Cancer Res. 2007;1(1):2–11. http://www.ncbi.nlm.nih.gov/pubmed/19262697. Accessed 27 May 2019.

    PubMed  PubMed Central  Google Scholar 

  47. Reese AS, Lu W, Regine WF. Utilization of intensity-modulated radiation therapy and image-guided radiation therapy in pancreatic cancer: is it beneficial? Semin Radiat Oncol. 2014;24(2):132–9. https://doi.org/10.1016/j.semradonc.2013.11.003.

    Article  PubMed  Google Scholar 

  48. Bhutani MS, Herman JM. Endoscopic ultrasound-guided fiducial placement for gastrointestinal malignancies. Gastroenterol Hepatol (N Y). 2019;15(3):167–70. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495410/. Accessed 2 June 2019.

    Google Scholar 

  49. van der Horst A, Lens E, Wognum S, et al. Limited role for biliary stent as surrogate fiducial marker in pancreatic cancer: stent and Intratumoral fiducials compared. Int J Radiat Oncol Biol Phys. 2014;89(3):641–8. https://doi.org/10.1016/j.ijrobp.2014.03.029.

    Article  PubMed  Google Scholar 

  50. Yu S, Lawrenson L, Wei R, et al. The dosimetric impact of image guided radiation therapy by intratumoral fiducial markers. Pract Radiat Oncol. 2016;6(4):276–83. https://doi.org/10.1016/j.prro.2015.11.007.

    Article  PubMed  Google Scholar 

  51. Cheung J, Kudchadker RJ, Zhu XR, Lee AK, Newhauser WD. Dose perturbations and image artifacts caused by carbon-coated ceramic and stainless steel fiducials used in proton therapy for prostate cancer. Phys Med Biol. 2010;55(23):7135–47. https://doi.org/10.1088/0031-9155/55/23/S13.

    Article  PubMed  Google Scholar 

  52. Zhang M, Kim S, Chen T, Mo X, Haffty BG, Yue NJ. Dose perturbations of gold fiducial markers in the prostate cancer intensity modulated proton radiation therapy (IMPT). Clin Eng Radiat Oncol. 2012. https://doi.org/10.4236/ijmpcero.2012.11002.

  53. Giebeler A, Fontenot J, Balter P, Ciangaru G, Zhu R, Newhauser W. Dose perturbations from implanted helical gold markers in proton therapy of prostate cancer. J Appl Clin Med Phys. 2009;10(1):2875. http://www.ncbi.nlm.nih.gov/pubmed/19223836. Accessed 2 June 2019.

    Article  Google Scholar 

  54. Newhauser W, Fontenot J, Koch N, et al. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Phys Med Biol. 2007;52(11):2937–52. https://doi.org/10.1088/0031-9155/52/11/001.

    Article  PubMed  Google Scholar 

  55. Kothary N, Heit JJ, Louie JD, et al. Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol. 2009;20(2):235–9. https://doi.org/10.1016/j.jvir.2008.09.026.

    Article  PubMed  Google Scholar 

  56. Sanders MK, Moser AJ, Khalid A, et al. EUS-guided fiducial placement for stereotactic body radiotherapy in locally advanced and recurrent pancreatic cancer. Gastrointest Endosc. 2010;71(7):1178–84. https://doi.org/10.1016/j.gie.2009.12.020.

    Article  PubMed  Google Scholar 

  57. Coronel E, Cazacu IM, Sakuraba A, et al. EUS-guided fiducial placement for GI malignancies: a systematic review and meta-analysis. Gastrointest Endosc. 2019;89(4):659–670.e18. https://doi.org/10.1016/j.gie.2018.10.047.

    Article  PubMed  Google Scholar 

  58. Ngamruengphong S, Li F, Zhou Y, Chak A, Cooper GS, Das A. EUS and survival in patients with pancreatic cancer: a population-based study. Gastrointest Endosc. 2010;72(1):78–83.e2. https://doi.org/10.1016/J.GIE.2010.01.072.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason K. Molitoris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Decesaris, C.M., Molitoris, J.K. (2021). Radiation Therapy in the Management of a Pancreatic Cancer. In: Anand, N., Darwin, P. (eds) Imaging Diagnostics in Pancreatic Cancer. Clinical Gastroenterology. Humana, Cham. https://doi.org/10.1007/978-3-030-69940-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69940-6_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-69939-0

  • Online ISBN: 978-3-030-69940-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics