Skip to main content

A Facile Synthesis of Gadolinium Titanate (GdTiO3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films

  • Conference paper
  • First Online:
Techno-Societal 2020

Abstract

The present research was carried out in understanding the enhanced efficiency of the I-V (current-voltage) properties of the novel inorganic nanocomposites (NCs) of Gd-TiO3. Nanocomposites of Gd-TiO3 synthesized by precipitation technique incorporating CTAB (cetyl trimethyl ammonium bromide) as capping agent characterized by XRD (X-ray diffraction), UV Visible, CV (cyclic voltammetry) SEM (scanning electron microscopy) analytical techniques. Tetragonal close packing of Gd-TiO3 NPs observed in XRD with particle overlay of Gd is 40 nm. Current-voltage properties studied with different concentration of Gd (10–40%) doped NS. The FF (fill factor) increases as the doping of Gd increases which indicates the increased charge dislocation inside the NCs of Gd-TiO3. The open circuit current (Voc) and power maximum also increases as the gadolinium concentration increases. The effect of the loading of the Gd on the conductivity of the NCs was investigated. The filler loading up to 30% I-V characteristics was linear and the 40% it shows non linearity in the I-V characteristics which shows the ohmic nature of the NCs and the electrodes. Impedance value decreases with increase in applied voltage. Current-voltage behavior of NCs depends largely on the Gd content and 40% filler loaded TiO3 showed better efficiency than the rest other NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith TF, Waterman MS (1981) Identification of Common Molecular Subsequences. J Mol Biol 147:195–197

    Article  Google Scholar 

  2. Dang ZM, Shehzad K, Zha JW, Hussain T, Jun N, Bai J (2011) On refining the relationship between aspect ratio and percolation threshold of practical carbon nanotubes/polymer nanocomposites. Jpn J Appl Phys 50:8

    Article  Google Scholar 

  3. Chen Y, Wang S, Pan F, Zhang J (2014) A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black. J. Nanomater. 614797:9

    Google Scholar 

  4. Nanda GS, Sravendra R, Jae WC, Lin L, Siew HC (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  5. Kim KS, Park SJ (2011) Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites. J Solid State Chem 184:3021–3027

    Article  Google Scholar 

  6. Cui LJ, Geng HZ, Wang WY, Chen LT, Gao J (2013) Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54:277–282

    Article  Google Scholar 

  7. Guadagno L, De Vivo B, Di Bartolomeo A (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930

    Article  Google Scholar 

  8. Wang Y, Rho WY, Yang HY, Mahmoudi T, Seo S, Lee DH, Hahn YB (2016) Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanoparticles composite. Nano Energy. 27:535–544

    Article  Google Scholar 

  9. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal Halide Perovskite as Visible-Light Sensitizers for Photovoltaic Cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  10. Im, J.H., Lee, C.R., Lee, J.W., Park, S.W., Park,N.G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 3, 4088–4093 (2011)

    Google Scholar 

  11. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskite. Science 338:643–647

    Article  Google Scholar 

  12. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396–17399

    Article  Google Scholar 

  13. Suresh, A.K., Pelletier,D.A., Wang,W., Morrell-Falvey, J.L., Gu,B.H., DoktyczM.J.:Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell Types. Langmuir. 28, 2727–2735 (2012)

    Google Scholar 

  14. Tabata Y, Ikada Y (1988) Macrophage phagocytosis of biodegradable microspheres composed of l-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res 22:837–858

    Article  Google Scholar 

  15. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, Himly M, Riediker M, Oostingh GJ (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types”. J. Nanobiotechnology. 13:1

    Article  Google Scholar 

  16. TiyaboonchaiW.: Chitosan nanoparticles: A promising system for drug delivery”. Naresuan University Journal. 11, 51–66 (2003)

    Google Scholar 

  17. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles”. J Nanosci Nanotechnol 5:244–249

    Article  Google Scholar 

  18. Ladjouzi,S., Tala-Ighil,R.:Iratn, A.: Ray irradiation effect on GdBO3/silica:Ce3others, −Ray irradiation effect on GdBO3/silica:Ce+3composite prepared by sol gel method Radiation Physics and Chemistry composite prepared by sol gel method. Radiat. Phys. Chem. 114, 1–4(2015)

    Google Scholar 

  19. Nazaretski E, Merithew RD, Kostroun VO (2004) Effect of low-level radiation on the low temperature acoustic behavior of a SiO2. Phys Rev Lett 92:

    Article  Google Scholar 

  20. Wang T, Ma W, Shangguan J, Jiang W, Zhong Q (2014) Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold. J Solid State Chem 215:67–73

    Article  Google Scholar 

  21. Li J, Feng Y, Zhang X (2015) Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica. Physica B Condens. Matter. 456:237–243

    Article  Google Scholar 

  22. Dhas NA, Raj CP (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  Google Scholar 

  23. Wang YQ, Nikitin K, Mc Comb DW (2008) Fabrication of Au–Cu2O core–shell nanocube heterostructures. Chem Phys Lett 456:202–205

    Article  Google Scholar 

  24. McFarland EW, Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH (2003) A Cu2O/TiO2 heterojunction thin film cathode for photo electro catalysis. Solution Energy Materials Solution Cells. 77:229–237

    Article  Google Scholar 

  25. Li, D., Chien,C.J., Deora,S., Chang, P.C., Moulin,E., Lu.J.G.: Prototype of a scalable core-shell Cu2O/TiO2 solar cell. Chem. Phys. Lett. 501, 446–450(2011)

    Google Scholar 

  26. Zainun,A.R., Tomoya,S., Noor,U.M., Rusop,M., Masaya.I.: New approach for generating Cu2O/TiO2 composite films for solar cell applications. Mater. Lett. 66, 254–256(2012)

    Google Scholar 

  27. Liu J, Durstock M, Dai L (2014) Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells, a Review. Energy Environ Sci 7:1297–1306

    Article  Google Scholar 

  28. Yonghua C, Wei-Chun L, Jun L, Liming D (2014) Graphene oxide-based carbon interconnecting layer for polymer tandem solar cells. Nano Lett 14:1467–1471

    Article  Google Scholar 

  29. Akimoto,K., Ishizuka,S., Yanagita,M., Nawa,Y., Paul,G.K., Sakurai.T.: Thin film deposition of Cu2O and application for solar cells. J. Sol. Energy. 80, 715–722(2006)

    Google Scholar 

  30. Izaki M, Mizuno K, Shinagawa T, Inaba M, Tasaka A (2006) Photochemical construction of photovoltaic device composed of p-copper (I) oxide and n-zinc oxide. J Electrochem Soc 153:C668–C672

    Article  Google Scholar 

  31. Prasanta S, Mitali S (2015) Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell. Bull Mater Sci 38:1–5

    Article  Google Scholar 

  32. Monica D, Prasanta S, Mitali S (2015) Synthesis of ZnO nanocomposites for photovoltaic applications. J Indian Chem Soc 92:1–4

    Google Scholar 

  33. Johan MR, Wen KS, Hawari N, Aznan NAK (2012) Synthesis and characterization of copper (I) iodide nanoparticles via chemical route. Int J Electrochem Sci 7:4942–4950

    Google Scholar 

  34. Kim YH, Kang YS, Lee WJ (2006) Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex. Mol Cryst Liq Cryst 445:231–238

    Google Scholar 

  35. Murray IP, Lou SJ, Cote LJ, Loser S (2011) Graphene oxide interlayers for robust, high-efficiency organic photovoltaic. J. Phys. Chem. Lett. 2:3006–3012

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to MSRIT, Bangalore, CENSE, IISc, Bangalore and Shivaji University, Kolhapur, Karnataka, India for their continuous support for all the needful experimentations and characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Adimule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adimule, V., Nandi, S.S., Jagadeesha Gowda, A.H. (2021). A Facile Synthesis of Gadolinium Titanate (GdTiO3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath, B. (eds) Techno-Societal 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-69925-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69925-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69924-6

  • Online ISBN: 978-3-030-69925-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics