Skip to main content

Study of Power Efficient 5G Mobile Edge Computing

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

Recently, there has been a lot of innovative work on cloud-based mobile networks. While distributed computing gives immense chances, it likewise forces a few difficulties. One of the difficulties that current information system administrators and future Fifth Generation (5G) wireless communication are predicting is a gigantic increment in data traffic. It is anticipated based on the vision of Internet of Things (IoT) that the growing 5G wireless communication will meet an extraordinary increment in congestion of calculating and processing of data as IoT incorporated exaggerated applications. A fundamental innovation in the escalating age of 5G is Mobile Edge Computing (MEC). Before sending the data to the cloud server, MEC can upgrade mobile devices by facilitating inventory intensified applications, process huge information and give the distributed computing platform within the radio access network (RAN). Hence, MEC empowers a wide range of utilizations. Without a doubt, the worldview is moving to the future generation network which could turn into a reality with the coming of new mechanical ideas. The actual response of MEC is still in its early stages and requests for steady endeavors from both scholarly and industry networks. With the ever-developing energy utilization for data and wireless communication innovation, the communication nodes and infrastructure undertake a significant job in worldwide greenhouse substance releases. Thus, the improvement of green 5G has become a significant task for the structure and execution of future remote communication. As MEC is a key segment of 5G, the energy efficiency has become a standard worry for the construction of the MEC component. In this chapter, we initially give an all-encompassing outline of MEC, its energy efficient innovation, potentials, needs, and applications. We further sum up exercises gained from energy efficient resource allocation and task offloading. We also talk about difficulties and expected future headings for MEC research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., and Puschmann, A., 2017. Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture. IEEE Communications Magazine, 55(2), pp. 70–78.

    Article  Google Scholar 

  2. Shit, R. C., Sharma, S., Obaidat, M. S., and Puthal, D., 2020. Adaptive Software Defined Node Deployment for Green Internet of Things. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.

    Google Scholar 

  3. Amtrup, J. W., Ma, J., Thompson, S. M., Shustorovich, A., Thrasher, C. W., and Macciola, A., 2017. U.S. Patent Application No. 15/396,306.

    Google Scholar 

  4. Yang, T. J., Chen, Y. H., & Sze, V., 2017, June. Designing energy-efficient convolutional neural networks using energy-aware pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5687–5695), IEEE.

    Google Scholar 

  5. Gai, K., Qiu, M., & Zhao, H., 2018. Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. Journal of Parallel and Distributed Computing, 111, pp. 126–135.

    Article  Google Scholar 

  6. Nan, Y., Li, W., Bao, W., Delicato, F. C., Pires, P. F., & Zomaya, A. Y., 2018. A dynamic tradeoff data processing framework for delay-sensitive applications in cloud of things systems. Journal of Parallel and Distributed Computing, 112, pp. 53–66.

    Article  Google Scholar 

  7. Ghosh, S., De, D., Deb, P., & Mukherjee, A., 2020. 5G-ZOOM-Game: Small cell zooming using weighted majority cooperative game for energy efficient 5G mobile network. Wireless Networks, 26(1), pp. 349–372.

    Article  Google Scholar 

  8. Jia, M., Yin, Z., Guo, Q., Liu, G., & Gu, X., 2017. Downlink design for spectrum efficient IoT network. IEEE Internet of Things Journal, 5(5), pp. 3397–3404.

    Article  Google Scholar 

  9. Yu, H., Lee, H., & Jeon, H., 2017. What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 9(10), pp. 1848.

    Article  Google Scholar 

  10. Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., and Wunder, G., 2017. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE journal on selected areas in communications, 35(6), pp. 1201–1221.

    Article  Google Scholar 

  11. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M., 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), pp. 2347–2376.

    Article  Google Scholar 

  12. Sheikh, J. A., Parah, S. A., & Bhat, G. M., 2017. Towards green capacity in massive Mimo based 4G-LTE a cell using beam-forming vector based sectored relay planning. Wireless Personal Communications, 97(4), pp. 5767–5781.

    Article  Google Scholar 

  13. Mukherjee, A., De, D., & Deb, P., 2016. Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), pp. 468–478.

    Article  Google Scholar 

  14. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T., 2017. Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), pp. 450–465.

    Article  Google Scholar 

  15. De, D., 2016. Mobile cloud computing: architectures, algorithms and applications. CRC Press.

    Book  Google Scholar 

  16. Noor, T. H., Zeadally, S., Alfazi, A., & Sheng, Q. Z., 2018. Mobile cloud computing: Challenges and future research directions. Journal of Network and Computer Applications, 115, pp. 70–85.

    Article  Google Scholar 

  17. Mukherjee, A., De, D., & Roy, D. G., 2016. A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), pp. 141–154.

    Article  Google Scholar 

  18. Mukherjee, A., Deb, P., De, D., & Buyya, R., 2019. IoT-F2N: An energy-efficient architectural model for IoT using Femtolet-based fog network. The Journal of Supercomputing, 75(11), pp. 7125–7146.

    Article  Google Scholar 

  19. Ahmed, E., Gani, A., Khan, M. K., Buyya, R., & Khan, S. U., 2015. Seamless application execution in mobile cloud computing: Motivation, taxonomy, and open challenges. Journal of Network and Computer Applications, 52, pp. 154–172.

    Article  Google Scholar 

  20. Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D., 2017. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine, 55(4), pp. 54–61.

    Article  Google Scholar 

  21. Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., and Ding, Z., 2020. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, pp. 116974–117017.

    Article  Google Scholar 

  22. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V., 2015. Mobile edge computing—A key technology towards 5G. ETSI white paper, 11(11), pp. 1–16.

    Google Scholar 

  23. Mach, P., & Becvar, Z., 2017. Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), pp. 1628–1656.

    Article  Google Scholar 

  24. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B., 2017. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), pp. 2322–2358.

    Article  Google Scholar 

  25. Beck, M. T., Werner, M., Feld, S., & Schimper, S., 2014, November. Mobile edge computing: A taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet (pp. 48–55). Citeseer.

    Google Scholar 

  26. Dolui, K., & Datta, S. K., 2017, June. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In 2017 Global Internet of Things Summit (GIoTS) (pp. 1–6). IEEE.

    Google Scholar 

  27. Chen, M., & Hao, Y., 2018. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), pp. 587–597.

    Article  Google Scholar 

  28. Tran, T. X., & Pompili, D., 2018. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1), pp. 856–868.

    Article  Google Scholar 

  29. You, C., Huang, K., Chae, H., & Kim, B. H., 2016. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), pp. 1397–1411.

    Article  Google Scholar 

  30. Le, H. Q., Al-Shatri, H., & Klein, A., 2017, June. Efficient resource allocation in mobile-edge computation offloading: Completion time minimization. In 2017 IEEE International Symposium on Information Theory (ISIT) (pp. 2513–2517). IEEE.

    Chapter  Google Scholar 

  31. Ning, Z., Huang, J., Wang, X., Rodrigues, J. J., & Guo, L., 2019. Mobile edge computing-enabled Internet of vehicles: Toward energy-efficient scheduling. IEEE Network, 33(5), pp. 198–205.

    Article  Google Scholar 

  32. Yang, Z., Hou, J., & Shikh-Bahaei, M., 2018, December. Energy efficient resource allocation for mobile-edge computation networks with NOMA. In 2018 IEEE Globecom Workshops (GC Wkshps) (pp. 1–7). IEEE.

    Google Scholar 

  33. Yang, Z., Pan, C., Hou, J., & Shikh-Bahaei, M., 2019. Efficient resource allocation for mobile-edge computing networks with NOMA: Completion time and energy minimization. IEEE Transactions on Communications, 67(11), pp. 7771–7784.

    Article  Google Scholar 

  34. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., & Neal, A., 2014. Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative, pp. 1089–7801.

    Google Scholar 

  35. Sung, N. W., Pham, N. T., Huynh, T., & Hwang, W. J., 2013. Predictive association control for frequent handover avoidance in femtocell networks. IEEE communications letters, 17(5), pp. 924–927.

    Article  Google Scholar 

  36. Pham, Q. V., & Hwang, W. J., 2016. Resource allocation for heterogeneous traffic in complex communication networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(10), pp. 959–963.

    Google Scholar 

  37. Liu, C. F., Bennis, M., & Poor, H. V., 2017, December. Latency and reliability-aware task offloading and resource allocation for mobile edge computing. In 2017 IEEE Globecom Workshops (GC Wkshps) (pp. 1–7). IEEE.

    Google Scholar 

  38. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. S., 2019. TOFFEE: Task offloading and frequency scaling for energy efficiency of mobile devices in mobile edge computing. IEEE Transactions on Cloud Computing.

    Google Scholar 

  39. Ren, J., He, Y., Huang, G., Yu, G., Cai, Y., & Zhang, Z., 2019. An edge-computing based architecture for mobile augmented reality. IEEE Network, 33(4), pp. 162–169.

    Article  Google Scholar 

  40. Chen, X., Pu, L., Gao, L., Wu, W., & Wu, D., 2017. Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wireless communications, 24(4), pp. 64–71.

    Article  Google Scholar 

  41. Li, M., Yu, F. R., Si, P., Yao, H., Sun, E., & Zhang, Y., 2017, May. Energy-efficient M2M communications with mobile edge computing in virtualized cellular networks. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.

    Google Scholar 

  42. Ning, Z., Dong, P., Kong, X., & Xia, F., 2018. A cooperative partial computation offloading scheme for mobile edge computing enabled Internet of Things. IEEE Internet of Things Journal, 6(3), pp. 4804–4814.

    Article  Google Scholar 

  43. Dai, Y., Xu, D., Maharjan, S., & Zhang, Y., 2018. Joint computation offloading and user association in multi-task mobile edge computing. IEEE Transactions on Vehicular Technology, 67(12), pp. 12313–12325.

    Article  Google Scholar 

  44. Kiani, A., & Ansari, N., 2018. Edge computing aware NOMA for 5G networks. IEEE Internet of Things Journal, 5(2), pp. 1299–1306.

    Article  Google Scholar 

  45. Tong, L., Li, Y., & Gao, W., 2016, April. A hierarchical edge cloud architecture for mobile computing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1–9). IEEE.

    Google Scholar 

  46. Ji, L., & Guo, S., 2018. Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet of Things Journal, 6(3), pp. 4744–4754.

    Article  Google Scholar 

  47. Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoneim, A., 2018. Energy efficient task caching and offloading for mobile edge computing. IEEE Access, 6, pp. 11365–11373.

    Article  Google Scholar 

  48. Yang, C., Liu, Y., Chen, X., Zhong, W., & Xie, S., 2019. Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access, 7, pp. 26652–26664.

    Article  Google Scholar 

  49. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., & Zhang, Y., 2019. Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet of Things Journal, 6(5), pp. 7635–7647.

    Article  Google Scholar 

  50. Mukherjee, A., Deb, P., De, D., & Obaidat, M. S., 2019. WmA-MiFN: A weighted majority and auction game based green ultra-dense micro-femtocell network system. IEEE Systems Journal, 14(1), pp. 353–362.

    Article  Google Scholar 

  51. Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., & Obaidat, M. S., 2020. URJA: Usage Jammer as a Resource Allocation for Secure Transmission in a CR-NOMA-Based 5G Femtocell System. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2999474

  52. Ha, D. T., Boukhatem, L., Kaneko, M., Nguyen-Thanh, N., & Martin, S., 2019. Adaptive beamforming and user association in heterogeneous cloud radio access networks: A mobility-aware performance-cost trade-off. Computer Networks, 160, pp. 130–143.

    Article  Google Scholar 

  53. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V., 2017. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), pp. 185–191.

    Article  Google Scholar 

  54. He, S., & Wang, W., 2019. Multimedia upstreaming cournot game in non-orthogonal multiple access Internet of Things. IEEE Transactions on Network Science and Engineering, 7(1), pp. 398–408.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Department of Science and Technology (DST) -FIST for SR/FST/ETI-296/2011 and TEQIP-III.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb, P., Obaidat, M.S., De, D. (2021). Study of Power Efficient 5G Mobile Edge Computing. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics