Skip to main content
Book cover

Fire Science pp 175–257Cite as

Extreme Fires

  • Chapter
  • First Online:

Abstract

Large, often severe fires are increasingly affecting the places people live including the built environment, the ecosystems, and the goods and services that benefit people around the world, especially in North and South America, Europe, and Australia. What are the conditions that allow for extreme fires? What effects do they have? How do scientists and managers define and identify these fires? Fires that have significant social, economic, or ecological impacts or that exhibit fire behavior beyond the limits of fire control are generally referred to as extreme. Our goal is for readers to understand the characteristics of extreme fires, the conditions associated with extreme fires, and the fire behavior associated with extreme fires. We explain the start and spread of crown fires, spotting, and complex fire-atmospheric interactions as these are part of extreme fires, and all fires. In this chapter of our book, Fire science from chemistry to landscape management, we draw on principles of fire science and examples of large fires from around the world to illustrate key concepts associated with extreme fires and their implications. Three interactive spreadsheets facilitate visualizing the main factors affecting the start and spread of crown fires and the likely spotting distances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albini, F. A. (1979). Spot fire distance from burning trees—A predictive model (Gen Tech Rep INT-56). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Albini, F. A. (1981). Spot fire distance from isolated sources—Extensions of a predictive model (Res Note INT-309). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Albini, F. A. (1983). Potential spotting distance from wind-driven surface fires (Gen Tech Rep INT-309). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Albini, F. A., Alexander, M. E., & Cruz, M. G. (2012). A mathematical model for predicting the maximum potential spotting distance from a crown fire. International Journal of Wildland Fire, 21, 609–627.

    Google Scholar 

  • Alexander, M. E. (1998). Crown fire thresholds in exotic pine plantations of Australasia. PhD Thesis. Australian National University, Canberra.

    Google Scholar 

  • Alexander, M. E. (2000). Fire behavior as a factor in forest and rural fire suppression (For Res Bull 28).

    Google Scholar 

  • Alexander, M. E., & De Groot, W. J. (1988). Fire behavior in jack pine stands as related to the Canadian Forest Fire Weather Index (FWI) System, poster with text. Alberta: Canadian Forestry Service & Northern Forestry Centre.

    Google Scholar 

  • Alexander, M. E., & Cruz, M. G. (2016). Crown fire dynamics in conifer forests. Chapter 9. In P. A. Werth, B. E. Potter, M. E. Alexander, C. B. Clements, M. G. Cruz, M. A. Finney, J. M. Forthofer, S. L. Goodrick, C. Hoffman, W. M. Jolly, S. S. McAllister, R. D. Ottmar, & A. Russell (Eds.), Synthesis of knowledge of extreme fire behavior: Vol 2 for fire behavior specialists, researchers, and meteorologists (Gen Tech Rep PNW-GTR-891, pp. 163257). Portland: USDA Forest Service Pacific Northwest Research Station.

    Google Scholar 

  • Alexander, M. E., Janz, B., & Quintilio, D. (1983). Analysis of extreme wildfire behavior in east-central Alberta: A case study. In Preprint Volume, Seventh Conference on Fire and Forest Meteorology; 1983 April 25–29; Fort Collins, CO (pp. 38–46). Boston: American Meteorological Society.

    Google Scholar 

  • Alexander, M., Heathcott, M., & Schwanke, R. (2013a). Fire behaviour case study of two early winter grass fires in southern Alberta, 27 November 2011. Edmonton: Partners in Protection Association.

    Google Scholar 

  • Alexander, M. E., Cruz, M. G., Vaillant, N. M., & Peterson, D. L. (2013b). Crown fire behavior characteristics and prediction in conifer forests: A state-of-knowledge synthesis. Final Report to the Joint Fire Science Program, Boise.

    Google Scholar 

  • Alvarado, E., Sandberg, D. V., & Pickford, S. G. (1998). Modeling large forest fires as extreme events. Northwest Science, 72, 66–75.

    Google Scholar 

  • Alves, C., Vicente, A., Nunes, T., Gonçalves, C., Fernandes, A. P., Mirante, F., Tarelho, L., de la Campa, A. M. L., Querol, X., Caseiro, A., Monteiro, C., Evtyugina, M., & Pio, C. (2011). Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. Atmospheric Environment, 45, 641–649.

    Article  Google Scholar 

  • Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., & Randerson, J. T. (2019). The global fire atlas of individual fire size, duration, speed and direction. Earth System Science Data, 11, 529–552.

    Article  Google Scholar 

  • Andersen, H. E., McGaughey, R. J., & Reutebuch, S. E. (2004). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94, 441–449.

    Article  Google Scholar 

  • Anderson, H. E. (1968). Sundance fire: An analysis of fire phenomena (Res Pap INT-56). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Anthenien, R. A., Tse, S. D., & Fernandez-Pello, A. C. (2006). On the trajectories of embers initially elevated or lofted by small-scale ground fire plumes in strong winds. Fire Safety Journal, 41(5), 349–363.

    Article  Google Scholar 

  • Barboni, T., Cannac, M., Leoni, E., & Chiaramonti, N. (2011). Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters. International Journal of Wild Fire 20, 152–161.

    Google Scholar 

  • Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology and Evolution, 1, 0058.

    Article  Google Scholar 

  • Bunk, S. (2004). World on fire. PLoS Biology, 2(2), e54.

    Article  Google Scholar 

  • Burrows, N. (2015). Fuels, weather and behaviour of the Cascade fire (Esperance fire #6) 15–17 November 2015. Perth: Science and Conservation Division. Department of Parks and Wildlife.

    Google Scholar 

  • Butler, B. W., & Reynolds, T. D. (1997). Wildfire case study: Butte City, southeastern Utah, July 1, 1994 (Gen Tech Rep INT-GTR-351). Ogden: USDA Forest Serv Intermountain Res Stn.

    Google Scholar 

  • Butler, B. W., Bartlette, R. A., Bradshaw, L. S., Cohen, J. D., Andrews, P. L., Putnam, T., & Mangan, R. J. (1998). Fire behavior associated with the 1994 South Canyon Fire on Storm King Mountain, Colorado (Res Pap RMRS–RP–9). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Byram, G. M. (1954). Atmospheric conditions related to blowup fires (Station Paper SE-SP-35). Asheville: USDA Forest Service Southeastern Forest Experiment Station.

    Google Scholar 

  • Byram, G. M. (1959). Forest fire behavior. In K. P. Davis (Ed.), Forest fire control and use (pp. 90–123). New York: McGraw-Hill, 554–555.

    Google Scholar 

  • Castellnou, M., Guiomar, N., Rego, F., & Fernandes, P. M. (2018). Fire growth patterns in the 2017 mega fire episode of October 15, central Portugal. In D. X. Viegas (Ed.), Advances in forest fire research, Chapter 3—Fire management, pp. 447–453.

    Google Scholar 

  • Catchpole, W. R. (1983). Letter to Dick Rothermel, October 31 (RWU 2103 files). Missoula: USDA Forest Service Intermountain Forest and Range Experiment Station Northern Forest Fire Laboratory.

    Google Scholar 

  • Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983). Fire in forestry. Forest fire behavior and effects (Vol. I). New York: Wiley.

    Google Scholar 

  • Chase, C. H. (1984). Spotting distance from wind-driven surface fires-extensions of equations for pocket calculators (Res Note INT-RN-346). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Chatelon, F.-J., Sauvagnargues, S., Dusserre, G., & Balbi, J.-H. (2014). Generalized blaze flash, a “flashover” behavior for forest fires—Analysis from the firefighter’s point of view. Open Journal of Forest, 4, 547–557.

    Article  Google Scholar 

  • Cheney, N. P., & Bary, G. A. V. (1969). The propagation of mass conflagrations in a standing eucalypt forest by the spotting process. In TTCP Mass Fire Symposium, Canberra.

    Google Scholar 

  • Cheney, N. P., Gould, J. S., & Catchpole, W. R. (1998). Prediction of fire spread in grasslands. International Journal of Wildland Fire, 8, 1–13.

    Article  Google Scholar 

  • Cheney, N. P., Gould, J. S., McCaw, W. L., & Anderson, W. R. (2012). Predicting fire behaviour in dry eucalypt forest in southern Australia. Forest Ecology and Management, 280, 120–131.

    Article  Google Scholar 

  • Chetehouna, K., Barboni, T., Zarguili, I., Leoni, E., Simeoni, A., & Fernandez-Pello, A. C. (2009). Investigation on the emission of volatile organic compounds from heated vegetation and their potential to cause an accelerating forest fire. Combustion Science and Technology, 181, 1273–1288.

    Article  Google Scholar 

  • Chetehouna, K., Courty, L., Garo, J. P., Viegas, D. X., & Fernandez-Pello, C. (2014). Flammability limits of biogenic volatile organic compounds emitted by fire-heated vegetation (Rosmarinus officinalis) and their potential link with accelerating forest fires in canyons: A Froude-scaling approach. Journal of Fire Sciences, 32, 316–327.

    Article  Google Scholar 

  • Clements, H. B. (1977). Lift-off of forest firebrands (Res Pap SE-159, p. 11). Asheville: USDA Forest Service Southeastern Forest Experiment Station.

    Google Scholar 

  • Coen, J., Mahalingam, S., & Daily, J. (2004). Infrared imagery of crown–fire dynamics during FROSTFIRE. Journal of Applied Meteorology, 43, 1241–1259.

    Article  Google Scholar 

  • Coen, J. L., Schroeder, W., & Quayle, B. (2018). The generation and forecast of extreme winds during the origin and progression of the 2017 Tubbs Fire. Atmosphere, 9, 462.

    Article  Google Scholar 

  • Cohen, J. D., & Butler, B. W. (1998). Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management. 13th Fire Meterology Conference IAWF, Lorne, pp 81–86.

    Google Scholar 

  • Cohen, J. D., & Deeming, J. E. (1985). The national fire-danger rating system: Basic equations (Gen Tech Rep PSW-GTR-82). Berkeley: USDA Forest Service Pacific Southwest Forest and Range Experiment Station.

    Google Scholar 

  • Countryman, C. M. (1972). The fire environment concept. Berkeley: USDA Forest Service Pacific Southwest Forest Range Experiment Station.

    Google Scholar 

  • Countryman, C. M. (1974). Can southern California wildland conflagrations be stopped? (Gen Tech Rep PSW-7). Berkeley: USDA Forest Service Pacific Southwest Forest Range Experiment Station.

    Google Scholar 

  • Cruz, M. G. (1999). Modeling the initiation and spread of crown fires. MSc thesis, University of Montana, Missoula.

    Google Scholar 

  • Cruz, M. G., & Alexander, M. E. (2013). Uncertainty associated with model predictions of surface and crown fire rates of spread. Environmental Modelling & Software, 47, 16–28.

    Article  Google Scholar 

  • Cruz, M. G., & Alexander, M. E. (2019). The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands. Annals of Forest Science, 76, 44.

    Article  Google Scholar 

  • Cruz, M. G., Alexander, M. E., & Wakimoto, R. H. (2004). Modeling the likelihood of crown fire occurrence in conifer forest stands. Forest Science, 50, 640–658.

    Google Scholar 

  • Cruz, M. G., Alexander, M. E., & Wakimoto, R. H. (2005). Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Canadian Journal of Forest Research, 35, 1626–1639.

    Article  Google Scholar 

  • Cruz, M. G., Sullivan, A. L., Gould, J. S., Sims, N. C., Bannister, A. J., Hollis, J. J., & Hurley, R. J. (2012). Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. Forest Ecology and Management, 284, 269–285.

    Article  Google Scholar 

  • Cruz, M. G., Gould, J. S., Alexander, M. E., Sullivan, A. L., McCaw, W. L., & Matthews, S. (2015). Empirical-based models for predicting head-fire rate of spread in Australian fuel types. Australian Forestry, 78, 118–158.

    Article  Google Scholar 

  • Cruz, M. G., Alexander, M. E., Fernandes, P. M., Kilinc, M., & Sil, Â. (2020). Evaluating the 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread against an extensive independent set of observations. Environmental Modelling & Software, 104818, 133.

    Google Scholar 

  • Dahale, A., Padhi, S., Shotorban, B., & Mahalingam, S. (2013). Flame merging in two neighboring shrub fires (Paper No 070FR-0198). In Proceedings of the 8th US National Combustion Meeting (p. 13). Combustion Institute, University of Utah, Salt Lake City, UT.

    Google Scholar 

  • de Ronde, C. (1988). Preliminary investigations into the use of fire as a management technique in plantation ecosystems of the Cape Province. MSc thesis, University of Natal.

    Google Scholar 

  • de Zea Bermudez, P., Mendes, J., Pereira, J. M. C., Turkman, K. F., & Vasconcelos, M. J. P. (2009). Spatial and temporal extremes of wildfires in Portugal (1984-2004). International Journal of Wildland Fire, 18, 983–991.

    Article  Google Scholar 

  • DeCoste, J. H., Wade, D. D., & Deeming, J. E. (1968). The Gaston Fire (Res Pap SE–43). Asheville: USDA Forest Service Southeastern Forest Experiment Station.

    Google Scholar 

  • Dold, J. W., Weber, R. O., Gill, M., Ellis, P., McRae, R., & Cooper, N. (2005). Unusual phenomena in an extreme bushfire. In G. J. Nathan, B. B. Dally, M. Kalt, et al. (Eds.), Proceedings of 5th Asia-Pacific Conference on Combustion 2005 (pp. 309–312). Adelaide: University of Adelaide.

    Google Scholar 

  • Dold, J., Simeoni, A., Zinoviev, A., & Weber, R. (2009). The Palasca fire, September 2000: Eruption or flashover? In D. X. Viegas (Ed.), Recent forest fire accidents in Europe. Ispra: JRC-IES, European Commission.

    Google Scholar 

  • Donoghue, L., Jackson, G., Angel, R., Beebe, G., Bishop, K., Close, K., Moore, R., Newman, E., Schmidt, M., & Whitlock, C. (2003). Cramer fire fatalities. Accident investigation factual report. Ogden: USDA For Serv North Fork Ranger District, Salmon-Challis National Forest, Region 4.

    Google Scholar 

  • Ellis, P. F. (2000). The aerodynamic and combustion characteristics of eucalypt bark—A firebrand study. PhD Thesis, Australian National University, Canberra.

    Google Scholar 

  • Ellis, P. F. (2010). The effect of the aerodynamic behavior of flakes of Jarrah and karri bark on their potential as firebrands. Journal of Royal Society of Western Australia, 93, 21–27.

    Google Scholar 

  • Evtyugina, M., Calvo, A. I., Nunes, T., Alves, C., Fernandes, A. P., Tarelho, L., Vicente, A., & Pio, C. (2013). VOC emissions of smoldering combustion from Mediterranean wildfires in central Portugal. Atmospheric Environment, 64, 339–348.

    Article  Google Scholar 

  • Fernandes, P. M., Loureiro, C., & Botelho, H. S. (2004). Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Annals of Forest Science, 61, 537–544.

    Article  Google Scholar 

  • Fernandes, P. M., Barros, A. G., Pinto, A., & Santos, J. A. (2016). Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. Journal of Geophysics Research Biogeoscience, 121, 2141–2157.

    Article  Google Scholar 

  • Fernandes, P. M., Guiomar, N., Mateus, P., & Oliveira, T. (2017). On the reactive nature of forest fire-related legislation in Portugal: A comment on Mourão and Martinho (2016). Land Use Policy, 60, 12–15.

    Article  Google Scholar 

  • Filippi, J. B., Cruz, M. G., Bosseur, F., & Girard, A. (2014). Investigation of vegetation fire plumes using paragliders tracks and micro-scale meteorological model. In D. X. Viegas (Ed.), Proceedings of VII International Conference of Forest Fire Research. Advances in Forest Fire Research. Coimbra: Imprensa da Universidade de Coimbra.

    Google Scholar 

  • Finney, M. A. (2004) FARSITE: Fire area simulator—Model development and evaluation (Res Pap RMRS-RP-4, revised). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Finney, M. A. (2006). An overview of FlamMap fire modelling capabilities. In P. L. Andrews, B. W. Butler (comps), Fuels management—How to measure success. Conference Proceedings (RMRS-P-41, pp. 213–220). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Forestry and Forest Products. (1998). Project Vesta Experiment. CSIRO. Retrieved March 20, 2020, from https://www.scienceimage.csiro.au/image/504/project-vesta-experimental-fire/.

  • Ganteaume, A., Lampin-Maillet, C., Guijarro, M., Hernando, C., Jappiot, M., Fonturbel, T., Pérez-Gorostiaga, P., & Vega, J. A. (2009). Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. International Journal of Wildland Fire, 18, 951–969.

    Article  Google Scholar 

  • Ganteaume, A., Guijarro, M., Jappiot, M., Hernando, C., Lampin-Maillet, C., Pérez-Gorostiaga, P., & Vega, J. A. (2011). Laboratory characterization of firebrands involved in spot fires. Annals of Forest Science, 68, 531–541.

    Article  Google Scholar 

  • Gould, J. S., McCaw, W. L., Cheney, N. P., Ellis, P. F., Knight, I. K., & Sullivan, A. L. (2007). Project Vesta—Fire in dry eucalypt forests: Fuel structure, fuel dynamics, and fire behavior. Canberra: Ensis-CSIRO, Department of Environment and Conservation.

    Google Scholar 

  • Gould, J. S., McCaw, L., & Cheney, P. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262, 531–546.

    Article  Google Scholar 

  • Guerreiro, J., Fonseca, C., Salgueiro, A., Fernandes, P., Lopez, E., de Neufville, R., Mateus, F., Castellnou, M., Silva J.S., Moura, J., Rego, F., & Mateus, P. (2017). Análise e apuramento dos factos relativos aos incêndios que ocorreram em Pedrógão Grande, Castanheira de Pêra, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã entre 17 e 24 de junho de 2017. Relatório Final. Lisboa: Comissão Técnica Independente. Assembleia da Républica.

    Google Scholar 

  • Guillom. (2008). Laminar and turbulent flows. Wikimedia commons. Retrieved March 20, 2020, from https://commons.wikimedia.org/wiki/File:Laminar_and_turbulent_flows.svg.

  • Haines, D. A. (1988). A lower atmospheric severity index for wildland fires. National Weather Digest, 13, 23–27.

    Google Scholar 

  • Hiers, J. K., O’Brien, J. J., Varner, J. M., et al. (2020). Prescribed fire science: The case for a refined research agenda. Fire Ecology, 16, 11.

    Article  Google Scholar 

  • Hirsch, K. G., & Martell, D. L. (1996). A review of initial attack fire crew productivity and effectiveness. International Journal of Wildland Fire, 6, 199–215.

    Article  Google Scholar 

  • Hodgson, A. (1968). Control burning in eucalypt forests in Victoria, Australia. Journal of Forestry, 66, 601–605.

    Google Scholar 

  • Keane, R. E., Reinhardt, E. D., Scott, J. H., Gray, K., & Reardon, J. (2005). Estimating forest canopy bulk density using six indirect methods. Canadian Journal of Forest Research, 35, 724–739.

    Article  Google Scholar 

  • Keetch, J. J., & Byram, G. M. (1968) A drought index for forest fire control (Res Pap SE-38). Asheville: USDA Forest Service Research Station.

    Google Scholar 

  • Keeves, A., & Douglas, D. R. (1983). Forest fires in South Australia on 16 February 1983 and consequent future forest management aims. Australian Forestry, 46, 148–162.

    Article  Google Scholar 

  • Kerr, J. W., Buck, C. C., Cline, W. E., Martin, S., & Nelson, W. D. (1971). Nuclear weapons effects in a forest environment (Thermal and Fire, No. DASIAC-SR-112). Santa Barbara: General Electric Co, DNA Information and Analysis Center.

    Google Scholar 

  • Kiil, A. D., & Grigel, J. E. (1969). The May 1968 forest conflagrations in central Alberta—A review of fire weather, fuels and fire behavior (Info Rep A–X–24). Calgary: Canada Department of Fisheries and Forestry, Forest Research Laboratory.

    Google Scholar 

  • Knight, I. (2001). The design and construction of a vertical wind tunnel for the study of untethered firebrands in flight. Fire Technology, 37, 87–100.

    Article  Google Scholar 

  • Koch, E. (1942). History of the 1910 forest fires in Idaho and western Montana. In When the mountains roared: Stories of the 1910 fire (Publ R1–78-30, p. 25). Missoula: USDA Forest Service USDA Forest Service Northern Region.

    Google Scholar 

  • Krishnamurthy, R., & Hall, J. G. (1987). Numerical and approximate solutions for plume rise. Atmospheric Environment, 21, 2083–2089.

    Article  Google Scholar 

  • Kylie, H. R., Hieronymus, G. H., & Hall, A. G. (1937). CCC forestry. Washington, DC: US Govern Printing Office.

    Google Scholar 

  • Lahaye, S., Sharples, J., Matthews, S., Heemstra, S., Price, O., & Badlan, R. (2018). How do weather and terrain contribute to firefighter entrapments in Australia? International Journal of Wildland Fire, 27, 85–98.

    Article  Google Scholar 

  • Lannom, K. O., Tinkham, W. T., Smith, A. M. S., Abatzoglou, J., Newingham, B. A., Hall, T. E., Morgan, P., Strand, E. K., Paveglio, T. B., Anderson, J. W., & Sparks, A. M. (2014). Defining extreme wildland fires using geospatial and ancillary metrics. International Journal of Wildland Fire, 23, 322–337.

    Article  Google Scholar 

  • Laurent, P., Mouillot, F., Moreno, M. V., Yue, C., & Ciais, P. (2019). Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences, 16, 275–288.

    Article  Google Scholar 

  • Lee, S. L., & Emmons, J. M. (1961). A study of natural convection above a line fire. Journal of Fluid Mechanics, 11, 353–369.

    Article  Google Scholar 

  • Linn, R. R., Reisner, J., Colman, J. J., & Winterkamp, J. (2002). Studying wildfire behavior using FIRETEC. International Journal of Wildland Fire, 11, 233–246.

    Article  Google Scholar 

  • Luke, R. H., & McArthur, A. G. (1978). Bushfires in Australia. Canberra: Department of Primary Industry. Forestry and Timber Bureau. CSIRO Division of Forest Research. Australian Government Publishing Service.

    Google Scholar 

  • MacIver, D. C., Auld, H., & Whitewood, R. (1989). Proceedings of the 10th Conference on Fire and Forest Meteorology. In Conference on Fire and Forest Meteorology, 17–21 Apr 1989. Ottawa: Department Forestry Canada.

    Google Scholar 

  • Maleknia, S. D., Bell, T. L., & Adams, M. A. (2009). Eucalypt smoke and wildfires: Temperature dependent emissions of biogenic volatile organic compounds. International Journal of Mass Spectrometry, 279, 126–133.

    Article  Google Scholar 

  • Manzello, S. M., Maranghides, A., Shields, J. R., Mell, W. E., Hayashi, Y., & Nii, D. (2007a). Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire and Materials, 33, 21–31.

    Article  Google Scholar 

  • Manzello, S. M., Maranghides, A., & Mell, W. E. (2007b). Firebrand generation from burning vegetation. International Journal of Wildland Fire, 16, 458–462.

    Article  Google Scholar 

  • Mateus, P., & Fernandes, P. M. (2014). Forest fires in Portugal: Dynamics, causes and policies. In F. Reboredo (Ed.), Forest context and policies in Portugal, present and future challenges series: World forests (Vol. 19, pp. 97–115). Berlin: Springer.

    Chapter  Google Scholar 

  • Matthews, S., Sauvage, S., Grootemaat, S., Hollis, J., Kenny, B., & Fox-Hughes, P. (2019). National fire danger rating system: Implementation of models and the forecast system. In Proceedings for the 6th International Fire Behavior and Fuels Conference April 29–May 3, 2019, Sydney, Australia. Missoula: International Association of Wildland Fire.

    Google Scholar 

  • McArthur, A. G. (1967). Fire behaviour in eucalypt forests (Leaflet No 107). Forestry and Timber Bureau.

    Google Scholar 

  • McPhillips, L. E., Chang, H., Chester, M. V., Depietri, Y., Friedman, E., Grimm, N. B., Kominoski, J. S., McPhearson, T., Méndez-Lázaro, P., Rosi, E. J., & Shafiei, S. J. (2018). Defining extreme events: A cross-disciplinary review. Earth’s Future, 6, 441–455.

    Article  Google Scholar 

  • McRae, R. H. D., Sharples, J. J., & Badlan, R. (2018). A model for identifying blow-up fire potential. In D. X. Viegas (Ed.), Advances in forest fire research, Chapter 1—Fire risk management, pp. 17–22.

    Google Scholar 

  • Mell, W. E., Charney, J. J., Jenkins, M. A., Cheney, P., & Gould, J. (2005). Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. In EastFIRE Conference, May 11–13, George Mason University, Fairfax VI.

    Google Scholar 

  • Mercer, G. N., & Weber, R. O. (1994). Plumes above line fires in a cross wind. International Journal of Wildland Fire, 4(4), 201–207.

    Article  Google Scholar 

  • Mercer, G. N., & Weber, R. O. (2001). Fire plumes. Chapter 7. In E. A. Johnson & K. Miyanishi (Eds.), Forest fires. Behavior and ecological effects (pp. 225–255). San Diego: Academic.

    Chapter  Google Scholar 

  • Michaletz, S. T., & Johnson, E. A. (2007). How forest fires kill trees: A review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500–515.

    Article  Google Scholar 

  • Mills, G. A., & McCaw, L. (2010). Atmospheric stability environments and fire weather in Australia—Extending the Haines index (Tech Rep No 20). Centre for Australian Weather and Climate Research.

    Google Scholar 

  • Moreira, F., Ascoli, D., Safford, H., Adams, M. A., Moreno, J. M., Pereira, J. M. C., Catry, F. X., Armesto, J., Bond, W., González, M. E., Curt, T., Koutsias, N., McCaw, L., Price, O., Pausas, J. G., Rigolot, E., Stephens, S., Tavsanoglu, C., Vallejo, V. R., Van Wilgen, B. W., Xanthopoulos, G., & Fernandes, P. M. (2020). Wildfire management in Mediterranean-type regions: Paradigm change needed. Environmental Research Letters, 15, 011001.

    Article  Google Scholar 

  • Moritz, M. A. (1997). Analyzing extreme disturbance events: Fire in Los Padres National Forest. Ecological Applications, 7, 1252–1262.

    Article  Google Scholar 

  • Morris, G. A. (1987). A simple method for computing spotting distances from wind-driven surface fires (Res Note INT-374). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Morvan, D. (2014). Wind effects, unsteady behaviors and regimes of propagation of surface fires in open fields. Combustion Science and Technology, 186, 869–888.

    Article  Google Scholar 

  • Morvan, D., Hoffman, C., Rego, F., & Mell, W. (2009). Numerical simulation of the interaction between two fire fronts in the context of suppression fire operations. In 8th Symposium on Fire and Forest Meteorology, 13–15 October 2009, Kalispell, MT, American Meteorological Society.

    Google Scholar 

  • Morvan, D., Hoffman, C., Rego, F., & Mell, W. (2011). Numerical simulation of the interaction between two fire fronts in grassland and shrubland. Fire Safety Journal, 46, 469–479.

    Article  Google Scholar 

  • Mount, A. B. (1969). Eucalypt ecology as related to fire. In Proceedings Tall Timbers Fire Ecology Conference (Vol. 9, pp. 75–108). Tallahassee: Tall Timbers Research Station.

    Google Scholar 

  • Mount, A. B. (1972). The derivation and testing of a soil dryness index using run-off data (Bull No. 4). Tasmania Forestry Commission.

    Google Scholar 

  • Muraszew, A. (1974). Firebrand phenomena. Aerospace Report ATR-74 (8165–01)-1. El Segundo: The Aerospace Corporation.

    Google Scholar 

  • Mutch, R. W., Arno, S. F., Brown, J. K., Carlson, C. E., Ottmar, R.D., & Peterson, J. L. (1993). Forest health in the Blue Mountains: A management strategy for fire-adapted ecosystems. USDA Forest Service General Technical Report PNW-GTR-310. 14 pp.

    Google Scholar 

  • National Wildlife Coordinating Group (NWCG). (2020). Retrieved March 20, 2020, from https://www.nwcg.gov/term/glossary/extreme-fire-behavior.

  • Nauslar, N. J., Abatzoglou, J. T., & Marsh, P. T. (2018). The 2017 North Bay and Southern California fires: A case study. Fire, 1(1), 18.

    Article  Google Scholar 

  • Noble, I. (1991). Behaviour of a very fast grassland wildfire on the Riverine Plain of south-eastern Australia. International Journal of Wildland Fire, 1, 189–196.

    Article  Google Scholar 

  • Nunes, L., Alvarez-Gonzalez, J., Alberdi, I., Silva, V., Rocha, M., & Rego, F. C. (2019). Analysis of the occurrence of wildfires in the Iberian Peninsula based on harmonized data from national forest inventories. Annals of Forest Science, 76, 27.

    Article  Google Scholar 

  • Pearce, H. G., Morgan, R. F., & Alexander, M. E. (1994). Wildfire behaviour case study of the 1986 Awarua Wetlands fire (Fire Tech Transfer Note 5, pp. 1–6). Rotorua: New Zealand Forest Research Institute National Rural Fire Authority.

    Google Scholar 

  • Pinto, M. M., DaCamara, C. C., Hurduc, A., Trigo, R. M., & Trigo, I. F. (2020). Enhancing the fire weather index with atmospheric instability information. Environmental Research Letters, 15, 0940b7.

    Article  Google Scholar 

  • Potter, B. E. (2016). Chapter 7: Spot fires. In P. A. Werth, B. E. Potter, M. E. Alexander, C. B. Clements, M. G. Cruz, M. A. Finney, J. M. Forthofer, S. L. Goodrick, C. Hoffman, W. M. Jolly, S. S. McAllister, R. D. Ottmar, & R. A. Parsons (Eds.), Synthesis of knowledge of extreme fire behavior: Vol. 2 for fire behavior specialists, researchers, and meteorologists (Gen Tech Rep PNW-GTR-891). Portland: USDA Forest Service Pacific Northwest Research Station.

    Google Scholar 

  • Potter, B. E. (2018). The Haines Index—It’s time to revise it or replace it. International Journal of Wildland Fire, 27, 437–440.

    Article  Google Scholar 

  • Pyne, S. J., Andrews, P. L., & Laven, R. D. (1996). Introduction to wildland fire. Chichester: Wiley.

    Google Scholar 

  • Quintilio, D., Lawson, B. D., Walkinshaw, S., & Van Nest, T. (2001). Final documentation report–Chisholm Fire (LWF-063). Edmonton: Alberta Sustainable Resource Development, Forest Protection Division Report I/036.

    Google Scholar 

  • Raj, V. C., & Prabhu, S. V. (2018). Measurement of geometric and radiative properties of heptane pool fires. Fire Safety Journal, 1, 13–26.

    Article  Google Scholar 

  • Raupach, M. R. (1990). Similarity analysis of the interaction of bushfire plumes with ambiente winds. Mathematical and Computer Modelling, 13(12), 113–121.

    Article  Google Scholar 

  • Ricotta, C., Avena, G., & Marchetti, M. (1999). The flaming sandpile: Self-organized criticality and wildfires. Ecological Modelling, 119, 73–77.

    Article  Google Scholar 

  • Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels (Res Pap INT-115). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Rothermel, R. C. (1984). Fire behavior considerations of aerial ignition. In R. W. Mutch (Tech coord), Prescribed fire by aerial ignition. Proceedings of a Workshop. Intermountain Fire Council (pp. 143–158).

    Google Scholar 

  • Rothermel, R. C. (1991). Predicting behavior and size of crown fires in the northern Rocky Mountains (Res Pap INT-438). Ogden: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Rothermel, R. C., & Andrews, P. L. (1987). Fire behavior system for the full range of fire management needs (Gen Tech Rep PSW-101, pp. 145–151). Berkeley: USDA Forest Service Pacific Southwest Forest and Range Experiment Station.

    Google Scholar 

  • Roxburgh, R., & Rein, G. (2008). Study of wildfire in-draft flows for counter fire operations. WIT Transactions on Ecology and the Environment, 119, 13–22.

    Article  Google Scholar 

  • Ruiz-González, A. D., & Álvarez-González, J. G. (2011). Canopy bulk density and canopy base height equations for assessing crown fire hazard in Pinus radiata plantations. Canadian Journal of Forest Research, 41, 839–850.

    Article  Google Scholar 

  • SALTUS. (2001). Fire spotting: mechanism analysis and modelling. Probabilistic model. Unpublished final report. EU Project ENV98-CT98-0701.

    Google Scholar 

  • Schroeder, M. J., & Chandler, C. C. (1966). Monthly fire behavior patterns. Res Note 112. Berkeley: USDA Forest Service Pacific Southwest Forest and Range Experiment Station.

    Book  Google Scholar 

  • Scott, J. H. (1999). NEXUS: A system for assessing crown fire hazard. Fire Manage Notes, 59, 20–24.

    Google Scholar 

  • Scott, J. H. (2006). Comparison of crown fire modelling systems used in three fire management applications (Res Pap RMRS-RP-58). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior (Res Pap RMRS-RP-29). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Scott JH, & Reinhardt. (2005). Stereo photo guide for estimating canopy fuel characteristics in conifer stands (Gen Tech Rep RMRS-GTR-145). Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Sharple, J. J., Cary, G. J., Fox-Hughes, P., Mooney, S., Evans, J. P., Fletcher, M. S., Fromm, M., Grierson, P. F., McRae, R., & Baker, P. (2016). Natural hazards in Australia: Extreme bushfire. Climatic Change, 139, 85–99.

    Article  Google Scholar 

  • Sharples, J. J. (2009). An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk. International Journal of Wildland Fire, 18, 737–754.

    Article  Google Scholar 

  • Silva, J. S., Rego, F., Fernandes, P., & Rigolot, E. (Eds.). (2010). Towards integrated fire management—Outcomes of the European project Fire Paradox (Res Rep 23). Joensuu: European Forest Institute.

    Google Scholar 

  • Simard, A. J., Haines, D. A., Blank, R. W., & Frost, J. S. (1983). The Mack Lake Fire (Gen Tech Rep NC-83). Saint Paul: USDA Forest Service North Central For Exp Sta

    Google Scholar 

  • Srock, A., Charney, J., Potter, B., & Goodrick, S. (2018). The hot-dry-windy index: A new fire weather index. Atmosphere, 9, 279–289.

    Article  Google Scholar 

  • Stocks, B. J. (1989). Fire behavior in mature jack pine. Canadian Journal of Forest Research, 19(6), 783–790.

    Article  Google Scholar 

  • Stocks, B. J., & Walker, J. D. (1973). Climatic conditions before and during four significant forest fire situations in Ontario. Sault Ste: Canadian Forestry Service, Great Lakes Forestry Research Centre, Information Report O-X-187.

    Google Scholar 

  • Stocks, B. J., Alexander, M. E., McAlpine, R. S., Lawson, B. D., & Van Wagner, C. E. (1987). Canadian forest fire danger rating system—User’s guide. Ottawa: Canadian Forestry Service Fire Danger Group.

    Google Scholar 

  • Stocks, B. J., Alexander, M. E., & Lanoville, R. A. (2004). Overview of the International Crown Fire Modelling Experiment (ICFME). Canadian Journal of Forest Research, 34, 1543–1547.

    Article  Google Scholar 

  • Sullivan, A. L. (2017). Inside the inferno: Fundamental processes of wildland fire behaviour. Current Forestry Reports, 3, 150–171.

    Article  Google Scholar 

  • Sullivan, A., Cruz, M. G., & Cheney, N. P. (2007). Burning bush. New Scientist, 195, 27.

    Article  Google Scholar 

  • Tarifa, C. S., Del Notario, P. P., & Moreno, F. G. (1965). On the flight paths and lifetimes of burning particles of wood. In 10th Symposium (International) on Combustion, 1 Jan 1965. The Combustion Institute, University of Cambridge, Cambridge (Vol. 10, pp. 1021–1037).

    Google Scholar 

  • Tedim, F., Leone, V., Amraoui, M., Bouillon, C., Coughlan, M. R., Delogu, G. M., Fernandes, P. M., Ferreira, C., McCaffrey, S., McGee, T. K., Parente, J., Paton, D., Pereira, M. G., Ribeiro, L. M., Viegas, D. X., & Xanthopoulos, G. (2018). Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire, 1, 9.

    Article  Google Scholar 

  • Telitsyn, H. P. (1996). A mathematical model of spread of high-intensity forest fires. In J. G. Goldammer & V. V. Furyaev (Eds.), Fire in ecosystems of boreal Eurasia (Forestry sciences) Dordrecht: Springer

    Google Scholar 

  • Thomas, P. H. (1963). The size of flames from natural fires. In International Symposium Proceedings Combustion (Vol. 9, pp. 844–859).

    Google Scholar 

  • Thomas, P. H. (1967). Some aspects of the growth and spread of fire in the open. Forest, 40, 139–164.

    Article  Google Scholar 

  • Tolhurst, K. (2009). Report on the physical nature of the Victorian Fires occurring on 7th February 2009. Parkville: Department of Forest and Ecosystem Science, University of Melbourne.

    Google Scholar 

  • Tolhurst, K., Shields, B., & Chong, D. (2008). Phoenix: Development and application of a bushfire risk management tool. Australian Journal of Emergency Management, 23, 47.

    Google Scholar 

  • Tory, K. J., & Kepert, J. (2019). Pyrocumulonimbus firepower threshold: A pyroCb prediction tool. East Melbourne: Bureau of Meteorology, Bushfire & Natural Hazards.

    Google Scholar 

  • Tory, K. J., Thurston, W., & Kepert, J. D. (2018). Thermodynamics of pyrocumulus: A conceptual study. Monthly Weather Review, 146, 2579–2598.

    Article  Google Scholar 

  • USDA Forest Service. (1956). Glossary of terms used in forest fire control. Agric Handbook 104. Washington, DC: Government Printing Office.

    Google Scholar 

  • USDA Forest Service. (1960). The “Pungo 1959” fire—A case study. In Annual report, 1959 (pp. 39–42). Asheville: USDA Forest Service, Southeastern Forest Experiment Station.

    Google Scholar 

  • Van Wagner. C. E. (1967). Calculations on forest fire spread by flame radiation. Canadian Department of Forestry and Rural Development Forestry Branch, Technical Report, Departmental Publication No. 1185. (Ottawa, ON)

    Google Scholar 

  • Van Wagner, C. E. (1973). Height of crown scorch in forest fires. Canadian Journal of Forest Research, 3, 373–378.

    Article  Google Scholar 

  • Van Wagner, C. E. (1974). Structure of the Canadian Forest Fire Weather Index. Publ. 1333. Ottawa: Canadian Forestry Service.

    Google Scholar 

  • Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 7, 23–34.

    Article  Google Scholar 

  • Van Wagner, C. E. (1989). Prediction of crown fire behavior in conifer stands. In D. C. MacIver, H. Auld, & R. Whitewood (Eds.), Proceedings of the 10th Conference on Fire and Forest Meteorology (pp. 207–212). Ottawa: For Can Environ.

    Google Scholar 

  • Van Wagner, C. E. (1993). Prediction of crown fire behavior in two stands of jack pine. Canadian Journal of Forest Research, 23, 442–449.

    Article  Google Scholar 

  • Vega, J. A., Jiménez, E., Dupuy, J.-L., & Linn, R. R. (2012). Effects of flame interaction on the rate of spread of heading and suppression fires in shrubland experimental fires. International Journal of Wildland Fire, 21, 950–960.

    Article  Google Scholar 

  • Viegas, D. X., & Pita, L. P. (2004). Fire spread in canyons. International Journal of Wildland Fire, 13, 253–274.

    Article  Google Scholar 

  • Wade, D. D., & Ward, D. E. (1973). An analysis of the Air Force Bomb Range Fire (Res Pap SE–105). Asheville: USDA Forest Service Southeastern Forest Experiment Station.

    Google Scholar 

  • Weise, D. R., Cobian-Iñiguez, J., & Princevac, M. (2018). Surface to crown transition. In S. L. Manzello (Ed.), Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Cham: Springer.

    Google Scholar 

  • Werth, P. A., Potter, B. E., Alexander, M. E., Clements, C. B., Cruz, M. G., Finney, M. A., Forthofer, J. M., Goodrick, S. L., Hoffman, C., Jolly, W. M., McAllister, S. S., Ottmar, R. D., & Parsons, R. A. (2016). Synthesis of knowledge of extreme fire behavior: Vol 2 for fire behavior specialists, researchers, and meteorologists (Gen Tech Rep PNW-GTR-891). Portland: USDA For Serv Pacific Northwest Res Station.

    Google Scholar 

  • Williams, C. (2007). Ignition impossible: When wildfires set the air alight. New Scientist (1971), 2615, 38–40.

    Article  Google Scholar 

  • Winkler, J. A., Potter, B. E., Wilhelm, D. F., Shadbolt, R. P., Piromsopa, K., & Bian, X. (2007). Climatological and statistical characteristics of the Haines Index for North America. International Journal of Wildland Fire, 16, 139–152.

    Article  Google Scholar 

  • Woods, J. B. Jr (1944). Training manual for smokechasers, lookouts and suppression crews (Bull 9). Salem: Oregon State Board of Forestry..

    Google Scholar 

  • Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research Atmospheres, 110, D24311.

    Article  Google Scholar 

  • Xanthopoulos, G., & Wakimoto, R. H. (1993). A time to ignition-temperature-moisture relationship for branches of three western conifers. Canadian Journal of Forest Research, 23, 253–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Supplementary Information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro Rego, F., Morgan, P., Fernandes, P., Hoffman, C. (2021). Extreme Fires. In: Fire Science. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-69815-7_8

Download citation

Publish with us

Policies and ethics