Skip to main content

From the Hartree to the Vlasov Dynamics: Conditional Strong Convergence

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations (ICPS 2019, ICPS 2018, ICPS 2017)

Abstract

We review the recent results [45, 46] concerning the semiclassical limit from the Hartree dynamics to the Vlasov equation with singular potentials and extend them to the case of more general radial interactions. We prove that, at positive temperature, the Hartree dynamics converges in trace norm to the Vlasov one, for a particular class of initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Such a solution indeed exists if the initial data are sufficiently regular. For the precise assumptions, see Remark 3 below.

References

  1. L. Amour, M. Khodja, J. Nourrigat, The semiclassical limit of the time dependent Hartree-Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)

    Article  MathSciNet  Google Scholar 

  2. L. Amour, M. Khodja, J. Nourrigat, The classical limit of the Heisenberg and time dependent Hartree-Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)

    Article  MathSciNet  Google Scholar 

  3. A. Athanassoulis, T. Paul, F. Pezzotti, M. Pulvirenti, Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)

    MathSciNet  MATH  Google Scholar 

  4. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)

    Article  MathSciNet  Google Scholar 

  5. V. Bach, S. Breteaux, S. Petrat, P. Pickl, T. Tzaneteas, Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

  6. C. Bardos, F. Golse, A.D. Gottlieb, N.J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)

    Article  MathSciNet  Google Scholar 

  7. C. Bardos, F. Golse, A.D. Gottlieb, N.J. Mauser, Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states. J. Stat. Phys. 115, 1037–1055 (2004)

    Article  MathSciNet  Google Scholar 

  8. C. Bardos, B. Ducomet, F. Golse, A. Gottlieb, N. Mauser, The TDHF approximation for Hamiltonians with m-particle interaction potentials. Commun. Math. Sci. suppl. 1, 1–9 (2007)

    Google Scholar 

  9. N. Benedikter, V. Jaksic, M. Porta, C. Saffirio, B. Schlein, Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69, 2250–2303 (2016)

    Article  MathSciNet  Google Scholar 

  10. N. Benedikter, M. Porta, C. Saffirio, B. Schlein, From the Hartree-Fock dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)

    Article  MathSciNet  Google Scholar 

  11. N. Benedikter, M. Porta, B. Schlein, Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)

    Article  MathSciNet  Google Scholar 

  12. N. Benedikter, M. Porta, B. Schlein, Effective evolution equations from quantum mechanics. Springer Briefs in Mathematical Physics, vol. 7 (2016)

    Google Scholar 

  13. N. Benedikter, M. Porta, B. Schlein, Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55(2) (2014)

    Google Scholar 

  14. L. Chen, J. Lee, M. Liew, Combined mean-field and semiclassical limits of large fermionic systems (2019). ArXiv:1910.09892v2

  15. R.L. Dobrushin, Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)

    Article  Google Scholar 

  16. A. Elgart, L. Erdős, B. Schlein, H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)

    Google Scholar 

  17. C.L. Fefferman, R. de la Llave, Relativistic stability of matter-I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)

    Article  MathSciNet  Google Scholar 

  18. A. Figalli, M. Ligabò, T. Paul, Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2012)

    Article  MathSciNet  Google Scholar 

  19. S. Fournais, M. Lewin, J.P. Solovej, The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ. 57–105, 1–42 (2018)

    Google Scholar 

  20. J. Fröhlich, A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)

    Article  MathSciNet  Google Scholar 

  21. I. Gasser, R. Illner, P.A. Markowich, C. Schmeiser, Semiclassical, \(t \rightarrow \infty \) asymptotics and dispersive effects for HF systems. Math. Modell. Numer. Anal. 32, 699–713 (1998)

    Article  Google Scholar 

  22. F. Golse, C. Mouhot, T. Paul, On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343, 165–205 (2016)

    Article  MathSciNet  Google Scholar 

  23. F. Golse, T. Paul, The Schrödinger equation in the mean-field and semiclassical regime. Arch. Rational Mech. Anal. 223, 57–94 (2017)

    Article  MathSciNet  Google Scholar 

  24. F. Golse, T. Paul, Empirical measures and quantum mechanics: applications to the mean-field limit. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03357-z

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Golse, T. Paul, M. Pulvirenti, On the derivation of the Hartree equation in the mean field limit: uniformity in the Planck constant. To appear in J. Funct. Anal. arXiv:1606.06436

  26. S. Graffi, A. Martinez, M. Pulvirenti, Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)

    Article  MathSciNet  Google Scholar 

  27. C. Hainzl, R. Seiringer, General decomposition of radial functions on \(^n\) and applications to \({\mathbb{R}}N\)-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)

    Google Scholar 

  28. S.V. Iordanskii, The Cauchy problem for the kinetic equation of plasma. Trudy Mat. Inst. Steklov 60, 181–194 (1961)

    MathSciNet  Google Scholar 

  29. L. Laflèche, Propagation of moments and semiclassical limit from Hartree to Vlasov equation. J. Stat. Phys. 177(1), 20–60 (2019)

    Article  MathSciNet  Google Scholar 

  30. L. Laflèche, Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data (2019). ArXiv:1902.08520

  31. M. Lewin, P.S. Madsen, A. Triay, Semi-classical limit of large fermionic systems at positive temperature (2019). ArXiv:1902.00310

  32. E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  33. E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  34. P.-L. Lions, T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)

    Article  MathSciNet  Google Scholar 

  35. P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MathSciNet  Google Scholar 

  36. P.A. Markowich, N.J. Mauser, The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)

    Article  MathSciNet  Google Scholar 

  37. H. Narnhofer, G.L. Sewell, Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)

    Article  MathSciNet  Google Scholar 

  38. S. Okabe, T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation. Osaka J. Math. 15, 245–261 (1978)

    MathSciNet  MATH  Google Scholar 

  39. S. Petrat, Hartree corrections in a mean-field limit for fermions with Coulomb interaction. J. Phys. A 50(24), 244004 (2017)

    Google Scholar 

  40. S. Petrat, P. Pickl, A new method and a new scaling for deriving fermionic mean-field dynamics.Math. Phys. Anal. Geom. 19, 3 (2016)

    Google Scholar 

  41. F. Pezzotti, M. Pulvirenti, Mean-field limit and semiclassical expansion of a quantum particle system. Ann. H. Poincaré 10(1), 145–187 (2009)

    Article  MathSciNet  Google Scholar 

  42. K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)

    Article  MathSciNet  Google Scholar 

  43. M. Porta, S. Rademacher, C. Saffirio, B. Schlein, Mean field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)

    Article  MathSciNet  Google Scholar 

  44. C. Saffirio, Mean-field evolution of fermions with singular interaction. Springer Proc. Math. Stat. 270, 81–99 (2018)

    MATH  Google Scholar 

  45. C. Saffirio, Semiclassical limit to the Vlasov equation with inverse power law potentials. Commun. Math. Phys. https://doi.org/10.1007/s00220-019-03397-5

  46. C. Saffirio, From the Hartree equation to the Vlasov-Poisson system: strong convergence for a class of mixed states. ArXiv:1903.06013

  47. H. Spohn, On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Swiss National Science Foundation through the Eccellenza project PCEFP2_181153 and of the NCCR SwissMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Saffirio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saffirio, C. (2021). From the Hartree to the Vlasov Dynamics: Conditional Strong Convergence. In: Bernardin, C., Golse, F., Gonçalves, P., Ricci, V., Soares, A.J. (eds) From Particle Systems to Partial Differential Equations. ICPS ICPS ICPS 2019 2018 2017. Springer Proceedings in Mathematics & Statistics, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-69784-6_16

Download citation

Publish with us

Policies and ethics