Abstract
We review the recent results [45, 46] concerning the semiclassical limit from the Hartree dynamics to the Vlasov equation with singular potentials and extend them to the case of more general radial interactions. We prove that, at positive temperature, the Hartree dynamics converges in trace norm to the Vlasov one, for a particular class of initial states.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Such a solution indeed exists if the initial data are sufficiently regular. For the precise assumptions, see Remark 3 below.
References
L. Amour, M. Khodja, J. Nourrigat, The semiclassical limit of the time dependent Hartree-Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)
L. Amour, M. Khodja, J. Nourrigat, The classical limit of the Heisenberg and time dependent Hartree-Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)
A. Athanassoulis, T. Paul, F. Pezzotti, M. Pulvirenti, Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)
C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)
V. Bach, S. Breteaux, S. Petrat, P. Pickl, T. Tzaneteas, Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)
C. Bardos, F. Golse, A.D. Gottlieb, N.J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)
C. Bardos, F. Golse, A.D. Gottlieb, N.J. Mauser, Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states. J. Stat. Phys. 115, 1037–1055 (2004)
C. Bardos, B. Ducomet, F. Golse, A. Gottlieb, N. Mauser, The TDHF approximation for Hamiltonians with m-particle interaction potentials. Commun. Math. Sci. suppl. 1, 1–9 (2007)
N. Benedikter, V. Jaksic, M. Porta, C. Saffirio, B. Schlein, Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69, 2250–2303 (2016)
N. Benedikter, M. Porta, C. Saffirio, B. Schlein, From the Hartree-Fock dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)
N. Benedikter, M. Porta, B. Schlein, Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)
N. Benedikter, M. Porta, B. Schlein, Effective evolution equations from quantum mechanics. Springer Briefs in Mathematical Physics, vol. 7 (2016)
N. Benedikter, M. Porta, B. Schlein, Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55(2) (2014)
L. Chen, J. Lee, M. Liew, Combined mean-field and semiclassical limits of large fermionic systems (2019). ArXiv:1910.09892v2
R.L. Dobrushin, Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)
A. Elgart, L. Erdős, B. Schlein, H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)
C.L. Fefferman, R. de la Llave, Relativistic stability of matter-I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)
A. Figalli, M. Ligabò, T. Paul, Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2012)
S. Fournais, M. Lewin, J.P. Solovej, The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ. 57–105, 1–42 (2018)
J. Fröhlich, A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)
I. Gasser, R. Illner, P.A. Markowich, C. Schmeiser, Semiclassical, \(t \rightarrow \infty \) asymptotics and dispersive effects for HF systems. Math. Modell. Numer. Anal. 32, 699–713 (1998)
F. Golse, C. Mouhot, T. Paul, On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343, 165–205 (2016)
F. Golse, T. Paul, The Schrödinger equation in the mean-field and semiclassical regime. Arch. Rational Mech. Anal. 223, 57–94 (2017)
F. Golse, T. Paul, Empirical measures and quantum mechanics: applications to the mean-field limit. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03357-z
F. Golse, T. Paul, M. Pulvirenti, On the derivation of the Hartree equation in the mean field limit: uniformity in the Planck constant. To appear in J. Funct. Anal. arXiv:1606.06436
S. Graffi, A. Martinez, M. Pulvirenti, Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)
C. Hainzl, R. Seiringer, General decomposition of radial functions on \(^n\) and applications to \({\mathbb{R}}N\)-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)
S.V. Iordanskii, The Cauchy problem for the kinetic equation of plasma. Trudy Mat. Inst. Steklov 60, 181–194 (1961)
L. Laflèche, Propagation of moments and semiclassical limit from Hartree to Vlasov equation. J. Stat. Phys. 177(1), 20–60 (2019)
L. Laflèche, Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data (2019). ArXiv:1902.08520
M. Lewin, P.S. Madsen, A. Triay, Semi-classical limit of large fermionic systems at positive temperature (2019). ArXiv:1902.00310
E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)
E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)
P.-L. Lions, T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)
P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)
P.A. Markowich, N.J. Mauser, The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)
H. Narnhofer, G.L. Sewell, Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)
S. Okabe, T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation. Osaka J. Math. 15, 245–261 (1978)
S. Petrat, Hartree corrections in a mean-field limit for fermions with Coulomb interaction. J. Phys. A 50(24), 244004 (2017)
S. Petrat, P. Pickl, A new method and a new scaling for deriving fermionic mean-field dynamics.Math. Phys. Anal. Geom. 19, 3 (2016)
F. Pezzotti, M. Pulvirenti, Mean-field limit and semiclassical expansion of a quantum particle system. Ann. H. Poincaré 10(1), 145–187 (2009)
K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)
M. Porta, S. Rademacher, C. Saffirio, B. Schlein, Mean field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)
C. Saffirio, Mean-field evolution of fermions with singular interaction. Springer Proc. Math. Stat. 270, 81–99 (2018)
C. Saffirio, Semiclassical limit to the Vlasov equation with inverse power law potentials. Commun. Math. Phys. https://doi.org/10.1007/s00220-019-03397-5
C. Saffirio, From the Hartree equation to the Vlasov-Poisson system: strong convergence for a class of mixed states. ArXiv:1903.06013
H. Spohn, On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)
Acknowledgements
The author acknowledges the support of the Swiss National Science Foundation through the Eccellenza project PCEFP2_181153 and of the NCCR SwissMAP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Saffirio, C. (2021). From the Hartree to the Vlasov Dynamics: Conditional Strong Convergence. In: Bernardin, C., Golse, F., Gonçalves, P., Ricci, V., Soares, A.J. (eds) From Particle Systems to Partial Differential Equations. ICPS ICPS ICPS 2019 2018 2017. Springer Proceedings in Mathematics & Statistics, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-69784-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-69784-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69783-9
Online ISBN: 978-3-030-69784-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)