Garcia, S., Luengo, J., Sáez, J.A., Lopez, V., Herrera, F.: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2012)
CrossRef
Google Scholar
Vorobeva, A.A.: Influence of features discretization on accuracy of random forest classifier for web user identification. In: 2017 20th Conference of Open Innovations Association (FRUCT), pp. 498–504. IEEE (2017)
Google Scholar
Elhilbawi, H., Eldawlatly, S., Mahdi, H.: A Taxonomy of Discretization Techniques based on Class Labels and Attributes’ Relationship. In: 2019 14th International Conference on Computer Engineering and Systems (ICCES), pp. 316–321. IEEE (2019)
Google Scholar
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., Mietus, J., Moody, G., Peng, C., Stanley, H.: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Google Scholar
Danubianu, M.: Step by step data preprocessing for data mining. a case study. In: Proceedings of the International Conference on Information Technologies (InfoTech-2015), pp. 117–124 (2015)
Google Scholar
Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
Google Scholar
Donders, A.R.T., Van Der Heijden, G.J., Stijnen, T., Moons, K.G.: A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091 (2006)
CrossRef
Google Scholar
Berka, P., Bruha, I.: Discretization and grouping: preprocessing steps for data mining. In: Żytkow, J.M., Quafafou, M. (eds.) Principles of Data Mining and Knowledge Discovery, PKDD 1998, Lecture Notes in Computer Science, vol. 1510, pp. 239–245. Springer, Berlin
Google Scholar
Boulle, M.: Optimal bin number for equal frequency discretizations in supervized learning. Intell. Data Anal. 9(2), 175–188 (2005)
CrossRef
Google Scholar
Steinley, D.: K-means clustering: a half-century synthesis. British J. Math. Stat. Psychol. 59(1), 1–34 (2006)
MathSciNet
CrossRef
Google Scholar
Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Disc. 6(4), 393–423 (2002)
MathSciNet
CrossRef
Google Scholar
Cano, A., Nguyen, D.T., Ventura, S., Cios, K.J.: ur-CAIM: improved CAIM discretization for unbalanced and balanced data. Soft. Comput. 20(1), 173–188 (2016)
CrossRef
Google Scholar
Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)
CrossRef
Google Scholar
Boulesteix, A.L., Janitza, S., Kruppa, J., König, I.R.: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisc. Rev. Data Min. Knowl. Dis. 2(6), 493–507 (2012)
CrossRef
Google Scholar
Sandri, M., Zuccolotto, P.: A bias correction algorithm for the Gini variable importance measure in classification trees. J. Comput. Graph. Stat. 17(3), 611–628 (2008)
MathSciNet
CrossRef
Google Scholar
Dhanabal, S., Chandramathi, S.: A review of various k-nearest neighbor query processing techniques. Int. J. Comput. Appl. 31(7), 14–22 (2011)
Google Scholar
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)
CrossRef
Google Scholar