Skip to main content

Sampling by Averages and Average Splines on Dirichlet Spaces and on Combinatorial Graphs

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 6

Abstract

In the framework of a strictly local regular Dirichlet space X we introduce the subspaces PW ω, ω > 0, of Paley–Wiener functions of bandwidth ω. It is shown that every function in PW ω, ω > 0, is uniquely determined by its average values over a family of balls B(x j, ρ), x j ∈X, which form an admissible cover of X and whose radii are comparable to ω−1∕2. The entire development heavily depends on some Poincaré-type inequalities. In the second part of the paper we realize the same idea in the setting of a weighted combinatorial finite or infinite graph G. We have to treat the case of graphs separately since the Poincaré inequalities we are using on them are somewhat different from the Poincaré inequalities in the first part.

Dedicated to the 80th Birthday of John Benedetto.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S.: Theory of Dirichlet forms and applications. (English summary) Lectures on probability theory and statistics (Saint-Flour, 2000), 1106, Lecture Notes in Math., 1816, Springer, Berlin, 2003.

    Google Scholar 

  2. Birman, B., Solomyak, M.: Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987.

    Book  Google Scholar 

  3. Bouleau, N., Hirsch, F.: Dirichlet forms and analysis on Wiener space. Walter de Gruyter, Berlin, New York (1991)

    Book  Google Scholar 

  4. Coifman, R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homog‘enes, Lecture Notes in Math. 242, Springer-Verlag, 1971.

    Google Scholar 

  5. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

    Article  MathSciNet  Google Scholar 

  6. Fukushima, M. Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics vol 19, Walter De Gruyter and Co., Berlin (1994)

    Book  Google Scholar 

  7. Pesenson, I.: A sampling theorem on homogeneous manifolds, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4257–4269.

    Article  MathSciNet  Google Scholar 

  8. Pesenson, I.: Poincare-type inequalities and reconstruction of Paley–Wiener functions on manifolds, J. of Geometric Analysis, (4), 1, (2004), 101–121.

    Google Scholar 

  9. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series, Trans. AMS, 72, (1952), 341–366.

    Article  MathSciNet  Google Scholar 

  10. Führ, H., Pesenson, I.: Poincaré and Plancherel-Polya inequalities in harmonic analysis on weighted combinatorial graphs, SIAM J. Discrete Math. 27 (2013), no. 4, 2007–2028.

    Article  MathSciNet  Google Scholar 

  11. Gröchenig, K.: Foundations of Time-Frequency Analysis, Birkhäuser, 2001.

    Google Scholar 

  12. Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectr. Theory 2 (2012), no. 4, 397–432.

    Article  MathSciNet  Google Scholar 

  13. Mohar, B.: Some applications of Laplace eigenvalues of graphs, in G. Hahn and G. Sabidussi, editors, Graph Symmetry: Algebraic Methods and Applications (Proc. Montrŕeal 1996), volume 497 of Adv. Sci. Inst. Ser. C. Math. Phys. Sci., pp. 225–275, Dordrecht (1997), Kluwer.

    Google Scholar 

  14. Parada-Mayorga, A.: Blue Noise and Optimal Sampling on Graphs. Thesis (Ph.D.) University of Delaware. 2019. 239 pp. ISBN: 978-1687-97469-3.

    Google Scholar 

  15. Parada-Mayorga, A., Lau, D. L., Giraldo, J. H., Arce, G. R.: Blue-noise sampling on graph, IEEE Trans. Signal Inform. Process. Netw. 5 (2019), no. 3, 554–569.

    MathSciNet  Google Scholar 

  16. Pesenson, I.: The best approximation in a representation space of a Lie group, Dokl. Acad. Nauk USSR, v. 302/5 (1988), 1055–1059; (Engl. Transl. in Soviet Math. Dokl. 38/2 (1989), 384–388)

    Google Scholar 

  17. Pesenson, I.: Sampling of Paley–Wiener functions on stratified groups, J. Four. Anal. Appl. 4 (1998), 269–280.

    Article  MathSciNet  Google Scholar 

  18. Pesenson, I.: Sampling of band limited vectors, J. Fourier Anal. Appl. 7/1 (2001), 93–100.

    Article  MathSciNet  Google Scholar 

  19. Pesenson, I.: Poincaré-type inequalities and reconstruction of Paley–Wiener functions on manifolds, J. Geometric Anal. 4/1 (2004), 101–121.

    Article  MathSciNet  Google Scholar 

  20. Pesenson, I.: Sampling in Paley–Wiener spaces on combinatorial graphs, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5603–5627.

    Article  MathSciNet  Google Scholar 

  21. Pesenson, I. Z.: Variational splines and Paley–Wiener spaces on combinatorial graphs, Constr. Approx. 29 (2009), no. 1, 1–21.

    Article  MathSciNet  Google Scholar 

  22. Pesenson, I. Z., Pesenson, M. Z.: Sampling, filtering and sparse approximations on combinatorial graphs, J. Fourier Anal. Appl. 16 (2010), no. 6, 921–942.

    Article  MathSciNet  Google Scholar 

  23. Sturm, K. T.: Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math. 456 (1994), 173–196.

    MathSciNet  MATH  Google Scholar 

  24. Sturm, K. T.: Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), 275–312.

    MathSciNet  MATH  Google Scholar 

  25. Sturm, K. T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl. 75 (1998), 273–297.

    MathSciNet  MATH  Google Scholar 

  26. Tremblay, N., Borgnat, P.: Subgraph-based filterbanks for graph signals, IEEE Trans. Signal Process. 64 (2016), no. 15, 3827–3840.

    Article  MathSciNet  Google Scholar 

  27. Wang, X., Liu, P., Gu, Y.: Local-Set-Based Graph Signal Reconstruction, IEEE Transactions on Signal Processing 63 (2015), no. 9, 2432–2444.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Z. Pesenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pesenson, I.Z. (2021). Sampling by Averages and Average Splines on Dirichlet Spaces and on Combinatorial Graphs. In: Hirn, M., Li, S., Okoudjou, K.A., Saliani, S., Yilmaz, Ö. (eds) Excursions in Harmonic Analysis, Volume 6. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-69637-5_14

Download citation

Publish with us

Policies and ethics