Skip to main content

OpenTraj: Assessing Prediction Complexity in Human Trajectories Datasets

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12627))

Included in the following conference series:

Abstract

Human Trajectory Prediction (HTP) has gained much momentum in the last years and many solutions have been proposed to solve it. Proper benchmarking being a key issue for comparing methods, this paper addresses the question of evaluating how complex is a given dataset with respect to the prediction problem. For assessing a dataset complexity, we define a series of indicators around three concepts: Trajectory predictability; Trajectory regularity; Context complexity. We compare the most common datasets used in HTP in the light of these indicators and discuss what this may imply on benchmarking of HTP algorithms. Our source code is released on Github (https://github.com/crowdbotp/OpenTraj).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  2. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 261–268 (2009)

    Google Scholar 

  3. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352 (2011)

    Google Scholar 

  4. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  5. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2255–2264 (2018)

    Google Scholar 

  6. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. arXiv preprint abs/2001.03093 (2020)

    Google Scholar 

  7. Amirian, J., Hayet, J.B., Pettré, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2964–2972 (2019)

    Google Scholar 

  8. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26, 655–664 (2007)

    Article  Google Scholar 

  9. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11621–11631 (2020)

    Google Scholar 

  10. Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The inD dataset: a drone dataset of naturalistic road user trajectories at German intersections. arXiv preprint abs/1911.07692 (2019)

    Google Scholar 

  11. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  12. Benfold, B., Reid, I.: Guiding visual surveillance by tracking human attention. In: Proceedings of the British Machine Vision Conference (BMVC) (2009)

    Google Scholar 

  13. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. arXiv preprint abs/1912.04838 (2019)

    Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  15. Yang, D., Li, L., Redmill, K., Ozguner, U.: Top-view trajectories: a pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 899–904 (2019)

    Google Scholar 

  16. Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)

    Google Scholar 

  17. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint abs/1504.01942 (2015)

    Google Scholar 

  18. Ferryman, J., Shahrokni, A.: PETS 2009: dataset and challenge. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), pp. 1–6 (2009)

    Google Scholar 

  19. Sadeghian, A., Kosaraju, V., Gupta, A., Savarese, S., Alahi, A.: TrajNet: towards a benchmark for human trajectory prediction. arXiv preprint abs/1805.07663 (2018)

    Google Scholar 

  20. Chavdarova, T., et al.: WILDTRACK: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5030–5039 (2018)

    Google Scholar 

  21. Majecka, B.: Statistical models of pedestrian behaviour in the forum. Master’s thesis, School of Informatics, University of Edinburgh (2009)

    Google Scholar 

  22. Brscic, D., Kanda, T., Ikeda, T., Miyashita, T.: Person position and body direction tracking in large public spaces using 3D range sensors. IEEE Trans. Hum.-Mach. Syst. 43, 522–534 (2013)

    Article  Google Scholar 

  23. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43, 395–406 (2009)

    Article  Google Scholar 

  24. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3153–3160 (2011)

    Google Scholar 

  25. Harmon, M., Lucey, P., Klabjan, D.: Predicting shot making in basketball learnt from adversarial multiagent trajectories. arXiv preprint abs/1609.04849 (2016)

    Google Scholar 

  26. Strigel, E., Meissner, D., Seeliger, F., Wilking, B., Dietmayer, K.: The Ko-PER intersection laser scanner and video dataset. In: Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 1900–1901 (2014)

    Google Scholar 

  27. Bieshaar, M., Zernetsch, S., Hubert, A., Sick, B., Doll, K.: Cooperative starting movement detection of cyclists using convolutional neural networks and a boosted stacking ensemble. arXiv preprint abs/1803.03487 (2018)

    Google Scholar 

  28. Liang, J., Jiang, L., Murphy, K., Yu, T., Hauptmann, A.: The garden of forking paths: towards multi-future trajectory prediction. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 10508–10518 (2020)

    Google Scholar 

  29. Yan, Z., Duckett, T., Bellotto, N.: Online learning for human classification in 3D lidar-based tracking. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 864–871 (2017)

    Google Scholar 

  30. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8748–8757 (2019)

    Google Scholar 

  31. Becker, S., Hug, R., Hübner, W., Arens, M.: An evaluation of trajectory prediction approaches and notes on the TrajNet benchmark. arXiv preprint abs/1805.07663 (2018)

    Google Scholar 

  32. Kothari, P., Kreiss, S., Alahi, A.: Human trajectory forecasting in crowds: a deep learning perspective (2020)

    Google Scholar 

  33. Ellis, D., Sommerlade, E., Reid, I.: Modelling pedestrian trajectory patterns with gaussian processes. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1229–1234 (2009)

    Google Scholar 

  34. Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. arXiv preprint abs/2003.08111 (2020)

    Google Scholar 

  35. Claeskens, G., Hjort, N.L.: Cambridge series in statistical and probabilistic mathematics. In: The Bayesian Information Criterion, pp. 70–98. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  36. Li, M., Westerholt, R., Fan, H., Zipf, A.: Assessing spatiotemporal predictability of LBSN: a case study of three foursquare datasets. GeoInformatica 22, 541–561 (2016)

    Article  Google Scholar 

  37. Olivier, A.H., Marin, A., Crétual, A., Berthoz, A., Pettré, J.: Collision avoidance between two walkers: role-dependent strategies. Gait Posture 38, 751–756 (2013)

    Article  Google Scholar 

  38. Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113, 238701 (2014)

    Article  Google Scholar 

  39. Plaue, M., Chen, M., Bärwolff, G., Schwandt, H.: Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings. In: Proceedings of the ISPRS Conference on Photogrammetric Image Analysis, pp. 285–296 (2011)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the CrowdBot H2020 EU Project http://crowdbot.eu and by the Intel Probabilistic Computing initiative. The work done by Francisco Valente Castro was sponsored using an MSc Scholarship given by CONACYT with the following scholar registry number 1000188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Amirian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amirian, J., Zhang, B., Castro, F.V., Baldelomar, J.J., Hayet, JB., Pettré, J. (2021). OpenTraj: Assessing Prediction Complexity in Human Trajectories Datasets. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12627. Springer, Cham. https://doi.org/10.1007/978-3-030-69544-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69544-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69543-9

  • Online ISBN: 978-3-030-69544-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics