Skip to main content

Multi-task Learning for Simultaneous Video Generation and Remote Photoplethysmography Estimation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12626))

Included in the following conference series:

Abstract

Remote photoplethysmography (rPPG) is a contactless method for estimating physiological signals from facial videos. Without large supervised datasets, learning a robust rPPG estimation model is extremely challenging. Instead of merely focusing on model learning, we believe data augmentation may be of greater importance for this task. In this paper, we propose a novel multi-task learning framework to simultaneously augment training data while learning the rPPG estimation model. We design three networks: rPPG estimation network, Image-to-Video network, and Video-to-Video network, to estimate rPPG signals from face videos, to generate synthetic videos from a source image and a specified rPPG signal, and to generate synthetic videos from a source video and a specified rPPG signal, respectively. Experimental results on three benchmark datasets, COHFACE, UBFC, and PURE, show that our method successfully generates photo-realistic videos and significantly outperforms existing methods with a large margin. (The code is publicly available at https://github.com/YiAnLee/Multi-Task-Learning-for-Simultaneous-VideoGeneration-and-Remote-Photoplethysmography-Estimation).

Y.-Y. Tsou and Y.-A. Lee—The first two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X., et al.: The OBF database: a large face video database for remote physiological signal measurement and atrial fibrillation detection. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), pp. 242–249 (2018)

    Google Scholar 

  2. Yu, Z., Li, X., Zhao, G.: Recovering remote photoplethysmograph signal from facial videos using spatio-temporal convolutional networks. CoRR abs/1905.02419 (2019)

    Google Scholar 

  3. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22

    Chapter  Google Scholar 

  4. Chen, W., McDuff, D.J.: DeepMag: source specific motion magnification using gradient ascent. CoRR abs/1808.03338 (2018)

    Google Scholar 

  5. Wang, Z.K., Kao, Y., Hsu, C.T.: Vision-based heart rate estimation via a two-stream CNN. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3327–3331 (2019)

    Google Scholar 

  6. de Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60, 2878–2886 (2013)

    Article  Google Scholar 

  7. Hernandez-Ortega, J., Fierrez, J., Morales, A., Tome, P.: Time analysis of pulse-based face anti-spoofing in visible and NIR. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  8. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 389–398 (2018)

    Google Scholar 

  9. Liu, S., Lan, X., Yuen, P.C.: Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection (2018)

    Google Scholar 

  10. Liu, S., Yuen, P.C., Zhang, S., Zhao, G.: 3D mask face anti-spoofing with remote photoplethysmography. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_6

    Chapter  Google Scholar 

  11. S̆petlík, R., Franc, V., C̆ech, J., Matas, J.: Visual heart rate estimation with convolutional neural network. In: Proceedings of British Machine Vision Conference (2018)

    Google Scholar 

  12. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2017)

    Article  Google Scholar 

  13. Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot, vol. 2014, pp. 1056–1062 (2014)

    Google Scholar 

  14. Niu, X., Han, H., Shan, S., Chen, X.: SynRhythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585 (2018)

    Google Scholar 

  15. Heusch, G., Anjos, A., Marcel, S.: A reproducible study on remote heart rate measurement. CoRR abs/1709.00962 (2017)

    Google Scholar 

  16. Benezeth, Y., Bobbia, S., Nakamura, K., Gomez, R., Dubois, J.: Probabilistic signal quality metric for reduced complexity unsupervised remote photoplethysmography, pp. 1–5 (2019)

    Google Scholar 

  17. Li, P., Yannick Benezeth, K.N., Gomez, R., Yang, F.: Model-based region of interest segmentation for remote photoplethysmography. In: 14th International Conference on Computer Vision Theory and Applications, pp. 383–388 (2019)

    Google Scholar 

  18. Li, X., Chen, J., Zhao, G., Pietikäinen, M.: Remote heart rate measurement from face videos under realistic situations. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4264–4271 (2014)

    Google Scholar 

  19. Macwan, R., Benezeth, Y., Mansouri, A.: Heart rate estimation using remote photoplethysmography with multi-objective optimization. Biomed. Signal Process. Control 49, 24–33 (2019)

    Article  Google Scholar 

  20. Macwan, R., Bobbia, S., Benezeth, Y., Dubois, J., Mansouri, A.: Periodic variance maximization using generalized eigenvalue decomposition applied to remote photoplethysmography estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1413–14138 (2018)

    Google Scholar 

  21. Wang, W., Stuijk, S., de Haan, G.: A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans. Biomed. Eng. 63, 1974–1984 (2016)

    Article  Google Scholar 

  22. Tsou, Y.Y., Lee, Y.A., Hsu, C.T., Chang, S.H.: Siamese-rPPG network: remote photoplethysmography signal estimation from face video. In: The 35th ACM/SIGAPP Symposium on Applied Computing (SAC 2020) (2020)

    Google Scholar 

  23. Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  24. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_23

    Chapter  Google Scholar 

  25. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification, pp. 289–293 (2018)

    Google Scholar 

  26. Qiu, Y., Liu, Y., Arteaga-Falconi, J., Dong, H., Saddik, A.E.: EVM-CNN: real-time contactless heart rate estimation from facial video. IEEE Trans. Multimed. 21, 1778–1787 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Ting Hsu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3254 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsou, YY., Lee, YA., Hsu, CT. (2021). Multi-task Learning for Simultaneous Video Generation and Remote Photoplethysmography Estimation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12626. Springer, Cham. https://doi.org/10.1007/978-3-030-69541-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69541-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69540-8

  • Online ISBN: 978-3-030-69541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics