Skip to main content

Introspective Learning by Distilling Knowledge from Online Self-explanation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

  • 719 Accesses

Abstract

In recent years, many methods have been proposed to explain individual classification predictions of deep neural networks. However, how to leverage the created explanations to improve the learning process has been less explored. The explanations extracted from a model can be used to guide the learning process of the model itself. Another type of information used to guide the training of a model is the knowledge provided by a powerful teacher model. The goal of this work is to leverage the self-explanation to improve the learning process by borrowing ideas from knowledge distillation. We start by investigating the effective components of the knowledge transferred from the teacher network to the student network. Our investigation reveals that both the responses in non-ground-truth classes and the class-similarity information in teacher’s outputs contribute to the success of the knowledge distillation. Motivated by the conclusion, we propose an implementation of introspective learning by distilling knowledge from online self-explanations. The models trained with the introspective learning procedure outperform the ones trained with the standard learning procedure, as well as the ones trained with different regularization methods. When compared to the models learned from peer networks or teacher networks, our models also show competitive performance and requires neither peers nor teachers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similar to [28], the temperature of softmax in KD is hidden to simplify notations.

References

  1. Kastner, S., Pinsk, M.A., Weerd, P.D., Desimone, R., Ungerleider, L.G.: Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999)

    Article  Google Scholar 

  2. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2013)

    Google Scholar 

  3. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: the all convolutional net. In: ICLR (2014)

    Google Scholar 

  4. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: ICML (2017)

    Google Scholar 

  5. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  6. Gu, J., Tresp, V.: Contextual prediction difference analysis for explaining individual image classifications. arXiv preprint arXiv:1910.09086 (2019)

  7. Wilson, T.D., Schooler, J.W.: Thinking too much: introspection can reduce the quality of preferences and decisions. J. Pers. Soc. Psychol. 60(2), 181–192 (1991)

    Article  Google Scholar 

  8. Leisti, T., Häkkinen, J.: The effect of introspection on judgment and decision making is dependent on the quality of conscious thinking. Conscious. Cogn. 42, 340–351 (2016)

    Article  Google Scholar 

  9. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. Off. J. Int. Neural Netw. Soc. 22(5–6), 544–557 (2009)

    Article  Google Scholar 

  10. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control and knowledge transfer. J. Mach. Learn. Res. 16, 2023–2049 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Lopez-Paz, D., Bottou, L., Schölkopf, B., Vapnik, V.: Unifying distillation and privileged information. In: ICLR (2015)

    Google Scholar 

  12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. stat 1050, 9 2015

    Google Scholar 

  13. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS (2013)

    Google Scholar 

  14. Ancona, M.B., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: ICLR (2017)

    Google Scholar 

  15. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10, e0130140 (2015)

    Article  Google Scholar 

  16. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  17. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML (2017)

    Google Scholar 

  18. Gu, J., Yang, Y., Tresp, V.: Understanding individual decisions of CNNs via contrastive backpropagation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 119–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_8

    Chapter  Google Scholar 

  19. Gu, J., Tresp, V.: Saliency methods for explaining adversarial attacks. arXiv preprint arXiv:1908.08413 (2019)

  20. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2014)

    Google Scholar 

  21. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. In: ICLR Workshop (2017)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006)

    Google Scholar 

  24. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. In: ICLR (2014)

    Google Scholar 

  25. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2016)

    Google Scholar 

  26. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR, pp. 4133–4141 (2017)

    Google Scholar 

  27. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  28. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: ICML (2018)

    Google Scholar 

  29. Gu, J., Tresp, V.: Search for better students to learn distilled knowledge. arXiv preprint arXiv:2001.11612 (2020)

  30. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR (2018) 4320–4328

    Google Scholar 

  31. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: 2003 The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  33. Villani, C.: The Wasserstein distances. In: Villani, C. (ed.) Optimal Transport. Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol. 338, pp. 93–111. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9_6

    Chapter  MATH  Google Scholar 

  34. Goodfellow, I.: Efficient per-example gradient computations. Technical report, Google Inc., Mountain View, CA, (2015)

    Google Scholar 

  35. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant: bridging the gap between student and teacher. arXiv preprint arXiv:1902.03393 (2019)

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  37. Muller, R.J., Kornblith, S., Hinton, G.E.: When does label smoothing help? ArXiv abs/1906.02629 (2019)

    Google Scholar 

  38. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)

    Google Scholar 

  39. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  40. Crowley, E.J., Gray, G., Storkey, A.J.: Moonshine: distilling with cheap convolutions. In: Advances in Neural Information Processing Systems, pp. 2888–2898 (2018)

    Google Scholar 

  41. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: NeurIPS, pp. 9525–9536 (2018)

    Google Scholar 

  42. Gu, J., Tresp, V.: Semantics for global and local interpretation of deep neural networks. arXiv preprint arXiv:1910.09085 (2019)

  43. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  44. Gu, J., Tresp, V.: Neural network memorization dissection. arXiv preprint arXiv:1911.09537 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, J., Wu, Z., Tresp, V. (2021). Introspective Learning by Distilling Knowledge from Online Self-explanation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics