Skip to main content

Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

Abstract

We propose a method for semantic segmentation in the unsupervised domain adaptation (UDA) setting. We particularly examine the domain gap between spatial-class distributions and propose to align the local distributions of the segmentation predictions. Despite its simplicity, the proposed method achieves state-of-the-art results in UDA segmentation benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We denote label and prediction corresponding to a pixel coordinates of (ij) with \(y_{ij} \in \{0,1\}^{K}\) and \(f(x)_{ij} \in \mathbb {R}^K\) respectively.

  2. 2.

    Note that this is not exactly entropy of the predictions as the \(y_{kij}\) terms are not summed over the class dimension k. But, the source sample predictions have low entropy as cross-entropy is minimized on them. Adversarial alignment results in aligned \(\overline{y}_{kij}\) distributions and thus, results in low entropy for the target predictions as well. As in [8], we found this weighted-scheme more effective because this adversarial loss promotes both the low entropy target predictions and aligned prediction maps across domains.

References

  1. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing (2018)

    Google Scholar 

  2. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI, vol. 6 (2016)

    Google Scholar 

  3. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), vol. 1 (2017)

    Google Scholar 

  4. Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1416–1425 (2019)

    Google Scholar 

  5. Cicek, S., Fawzi, A., Soatto, S.: SaaS: speed as a supervisor for semi-supervised learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part II. LNCS, vol. 11206, pp. 152–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_10

    Chapter  Google Scholar 

  6. Cicek, S., Soatto, S.: Input and weight space smoothing for semi-supervised learning. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  8. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. arXiv preprint arXiv:1811.12833 (2018)

  9. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  10. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No more discrimination: Cross city adaptation of road scene segmenters. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1992–2001 (2017)

    Google Scholar 

  11. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: The IEEE International Conference on Computer Vision (ICCV), vol. 2 (2017)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  13. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  14. Chen, Y., Li, W., Van Gool, L.: Road: reality oriented adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7892–7901 (2018)

    Google Scholar 

  15. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  16. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2507–2516 (2019)

    Google Scholar 

  17. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Domain adaptation for semantic segmentation via class-balanced self-training. arXiv preprint arXiv:1810.07911 (2018)

  18. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

  19. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part III. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  20. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: a non-adversarial approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6758–6767 (2019)

    Google Scholar 

  21. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  22. Hoffman, J., et al.: Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  23. Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6810–6818 (2018)

    Google Scholar 

  24. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017)

    Article  Google Scholar 

  25. Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense random fields. In: International Conference on Machine Learning, pp. 513–521 (2013)

    Google Scholar 

  26. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  27. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part VII. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  28. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. In: Advances in Neural Information Processing Systems, pp. 433–443 (2019)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgment

Research supported by ONR N00014-19-1-2229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Cicek .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 21855 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicek, S., Xu, N., Wang, Z., Jin, H., Soatto, S. (2021). Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics