Skip to main content

Visualizing Color-Wise Saliency of Black-Box Image Classification Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Abstract

Image classification based on machine learning is being commonly used. However, a classification result given by an advanced method, including deep learning, is often hard to interpret. This problem of interpretability is one of the major obstacles in deploying a trained model in safety-critical systems. Several techniques have been proposed to address this problem; one of which is RISE, which explains a classification result by a heatmap, called a saliency map, that explains the significance of each pixel. We propose MC-RISE (Multi-Color RISE), which is an enhancement of RISE to take color information into account in an explanation. Our method not only shows the saliency of each pixel in a given image as the original RISE does, but the significance of color components of each pixel; a saliency map with color information is useful especially in the domain where the color information matters (e.g., traffic-sign recognition). We implemented MC-RISE and evaluate them using two datasets (GTSRB and ImageNet) to demonstrate the effectiveness of our methods in comparison with existing techniques for interpreting image classification results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that other common metrics (e.g., pointing game) are not appropriate for evaluating MC-RISE because these metrics focus on the positional saliency; they do not consider the color saliency.

References

  1. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: SIGKDD 2016 (2016)

    Google Scholar 

  2. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS 2017 (2017)

    Google Scholar 

  3. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV 2017 (2017)

    Google Scholar 

  4. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models. In: BMVC 2018 (2018)

    Google Scholar 

  5. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). ISSN 2380-7504

    Google Scholar 

  6. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018)

    Google Scholar 

  7. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, vol. 70, pp. 3319–3328 (2017). JMLR.org

  8. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint (2017). arXiv:1706.03825

  9. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  10. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: International Conference on Learning Representations (2015)

    Google Scholar 

  11. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015)

    Google Scholar 

  12. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, International Convention Centre, Sydney, Australia, PMLR, vol. 70, pp. 3145–3153 (2017)

    Google Scholar 

  13. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vision 126(10), 1084–1102 (2017). https://doi.org/10.1007/s11263-017-1059-x

    Article  Google Scholar 

  14. Vasu, B., Long, C.: Iterative and adaptive sampling with spatial attention for black-box model explanations. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 2960–2969 (2020)

    Google Scholar 

  15. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

    Article  Google Scholar 

  16. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  17. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 9505–9515. Curran Associates, Inc. (2018)

    Google Scholar 

  18. Heo, J., Joo, S., Moon, T.: fooling neural network interpretations via adversarial model manipulation. In Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 2925–2936. Curran Associates, Inc. (2019)

    Google Scholar 

  19. Dombrowski, A.K., Alber, M., Anders, C., Ackermann, M., Müller, K.R., Kessel, P.: Explanations can be manipulated and geometry is to blame. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 13589–13600. Curran Associates, Inc. (2019)

    Google Scholar 

  20. Subramanya, A., Pillai, V., Pirsiavash, H.: Fooling network interpretation in image classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2020–2029 (2019)

    Google Scholar 

  21. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017)

    Google Scholar 

  22. Fong, R., Patrick, M., Vedaldi, A.: Understanding deep networks via extremal perturbations and smooth masks. In: ICCV 2019 (2019)

    Google Scholar 

  23. Wagner, J., Kohler, J.M., Gindele, T., Hetzel, L., Wiedemer, J.T., Behnke, S.: Interpretable and fine-grained visual explanations for convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9097–9107 (2019)

    Google Scholar 

  24. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015). ISSN 1938-7228. Section: Machine Learning

    Google Scholar 

  25. Schallner, L., Rabold, J., Scholz, O., Schmid, U.: Effect of superpixel aggregation on explanations in LIME – a case study with biological data. CoRR abs/1910.07856 (2019)

    Google Scholar 

  26. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. arXiv preprint (2018). arXiv:1805.10820

  27. Tsang, M., Cheng, D., Liu, H., Feng, X., Zhou, E., Liu, Y.: Feature interaction interpretability: a case for explaining ad-recommendation systems via neural interaction detection. In: International Conference on Learning Representations (2019)

    Google Scholar 

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Schwab, P., Karlen, W.: CXPlain: causal explanations for model interpretation under uncertainty. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 10220–10230. Curran Associates, Inc. (2019)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016 (2016)

    Google Scholar 

  32. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.:) Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037. Curran Associates, Inc. (2019)

    Google Scholar 

Download references

Acknowledgment

We thank the reviewers for their fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhki Hatakeyama .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1617 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatakeyama, Y., Sakuma, H., Konishi, Y., Suenaga, K. (2021). Visualizing Color-Wise Saliency of Black-Box Image Classification Models. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics