Skip to main content

Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12623))

Abstract

Despite convolutional network-based methods have boosted the performance of single image super-resolution (SISR), the huge computation costs restrict their practical applicability. In this paper, we develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A\(^2\)F) for SISR. Firstly, to explore the features from the bottom layers, the auxiliary feature from all the previous layers are projected into a common space. Then, to better utilize these projected auxiliary features and filter the redundant information, the channel attention is employed to select the most important common feature based on current layer feature. We incorporate these two modules into a block and implement it with a lightweight network. Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods. Notably, when parameters are less than 320k, A\(^2\)F outperforms SOTA methods for all scales, which proves its ability to better utilize the auxiliary features. Codes are available at https://github.com/wxxxxxxh/A2F-SR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2015)

    Article  Google Scholar 

  2. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  3. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  4. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4799–4807 (2017)

    Google Scholar 

  5. Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X., Huang, T.: Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv:1808.08718 (2018)

  6. Zhang, K., Wang, B., Zuo, W., Zhang, H., Zhang, L.: Joint learning of multiple regressors for single image super-resolution. IEEE Signal Process. Lett. 23, 102–106 (2015)

    Article  Google Scholar 

  7. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  8. Chen, L., Zhan, W., Tian, W., He, Y., Zou, Q.: Deep integration: a multi-label architecture for road scene recognition. IEEE Trans. Image Process. 28, 4883–4898 (2019)

    Google Scholar 

  9. Hsiao, P.-H., Chang, P.-L.: Video enhancement via super-resolution using deep quality transfer network. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 184–200. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_13

    Chapter  Google Scholar 

  10. Peled, S., Yeshurun, Y.: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. J. Int. Soc. Magn. Resonan. Med. 45, 29–35 (2001)

    Article  Google Scholar 

  11. Shi, W., et al.: Cardiac image super-resolution with global correspondence using multi-atlas PatchMatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_2

    Chapter  Google Scholar 

  12. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2805–2813 (2017)

    Google Scholar 

  13. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Sig. Process. 90, 848–859 (2010)

    Article  Google Scholar 

  14. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 677–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_40

    Chapter  Google Scholar 

  15. Chen, L., et al.: Surrounding vehicle detection using an FPGA panoramic camera and deep CNNs. IEEE Trans. Intell. Transp. Syst. 21, 5110–5122 (2019)

    Google Scholar 

  16. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.L.: Deep differentiable random forests for age estimation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 404–419 (2019)

    Google Scholar 

  17. Yang, X., et al.: Scrdet: towards more robust detection for small, cluttered and rotated objects. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8232–8241 (2019)

    Google Scholar 

  18. Chen, L., Wang, Q., Lu, X., Cao, D., Wang, F.Y.: Learning driving models from parallel end-to-end driving data set. Proc. IEEE 108, 262–273 (2019)

    Article  Google Scholar 

  19. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76, 21811–21838 (2017). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  20. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 517–532 (2018)

    Google Scholar 

  21. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  22. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  23. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  24. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  25. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  26. Chu, X., Zhang, B., Ma, H., Xu, R., Li, J., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. arXiv preprint arXiv:1901.07261 (2019)

  27. Chu, X., Zhang, B., Xu, R., Ma, H.: Multi-objective reinforced evolution in mobile neural architecture search. arXiv preprint arXiv:1901.01074 (2019)

  28. Wang, C., Li, Z., Shi, J.: Lightweight image super-resolution with adaptive weighted learning network. arXiv preprint arXiv:1904.02358 (2019)

  29. Zhao, X., Liao, Y., Lfi, Y., Zhang, T., Zou, X.: Fc2n: fully channel-concatenated network for single image super-resolution. arXiv preprint arXiv:1907.03221 (2019)

  30. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2019)

    Google Scholar 

  31. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  34. Tai, Y., Yang, J., Liu, X., Xu, C.: Memnet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  35. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  36. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  37. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  38. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  39. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  40. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  41. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  42. Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, ICCV Vancouver (2001)

    Google Scholar 

  43. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang., O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018)

    Google Scholar 

  45. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  46. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  47. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  48. Choi, J.S., Kim, M.: A deep convolutional neural network with selection units for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 154–160 (2017)

    Google Scholar 

  49. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 723–731 (2018)

    Google Scholar 

  50. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multidistillation network. In: ACM Multimedia (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1305002, in part by the National Natural Science Foundation of China under Grant 61773414, and Grant 61972250, in part by the Key Research and Development Program of Guangzhou under Grant 202007050002, and Grant 202007050004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7685 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Wang, Q., Zhao, Y., Yan, J., Fan, L., Chen, L. (2021). Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics