Skip to main content

Emerging Technologies in Breast Cancer Screening and Diagnosis

  • Chapter
  • First Online:
Breast & Gynecological Diseases

Abstract

The role and science of imaging for breast cancer screening and diagnosis are in a state of constant change. Technical advancements, including iterative improvements to preexisting modalities and the development of novel imaging methods, are the underpinning of many of these advances. The expanding body of literature further defines both the applications and limitations of new and established breast imaging technology and informs changes in the role of imaging in the management of breast cancer. Increasingly personalized breast cancer treatment options have increased demand for personalized screening protocols risk analysis for specific patients and populations. These advances are not independent of each other, and they may be considered in four major categories. The first is supplemental screening, to address limitations of traditional mammography, including breast density. The second is personalized risk-based screening and recognizing that different populations require different screening regimens. The third is functional imaging and particularly the ongoing development of applications for intravascular iodinated and gadolinium-based contrast agents to identify high-risk tissue histology. Finally, breast imaging remains at the forefront of artificial intelligence (AI) research and related technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duffy SW, Tabar L, Yen AM, Dean PB, Smith RA, Jonsson H, et al. Mammography screening reduces rates of advanced and fatal breast cancers: results in 549,091 women. Cancer. 2020;126(13):2971–9.

    Article  Google Scholar 

  2. Pisano ED, Hendrick RE, Yaffe MJ, et al. Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology. 2008;246(2):376–83. https://doi.org/10.1148/radiol.24610702002.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berg WA, Bandos AI, Mendelson EB, Lehrer D, Jong RA, Pisano ED. Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. J Natl Cancer Inst. 2015;108(4):djv367. https://doi.org/10.1093/jnci/djv3673. Published 2015 Dec 28

    Article  PubMed  PubMed Central  Google Scholar 

  4. Screening mammography sensitivity, specificity, & false negative rate: breast cancer surveillance consortium; [updated 3/23/2017]. Available from: https://www.bcsc-research.org/statistics/screening-performance-benchmarks/screening-sens-spec-false-negative.

  5. Lee CI, Chen LE, Elmore JG. Risk-based breast cancer screening: implications of breast density. Med Clin North Am. 2017;101(4):725–41. https://doi.org/10.1016/j.mcna.2017.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brentnall AR, Cuzick J, Buist DSM, Bowles EJA. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol. 2018;4(9):e180174. https://doi.org/10.1001/jamaoncol.2018.0174.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gail MH, Mai PL. Comparing breast cancer risk assessment models. J Natl Cancer Inst. 2010;102(10):665–8. https://doi.org/10.1093/jnci/djq141.

    Article  PubMed  Google Scholar 

  8. Vianna FSL, Giacomazzi J, Oliveira Netto CB, et al. Performance of the Gail and Tyrer-Cuzick breast cancer risk assessment models in women screened in a primary care setting with the FHS-7 questionnaire. Genet Mol Biol. 2019;42(1 suppl 1):232–7. https://doi.org/10.1590/1678-4685-GMB-2018-0110.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol. 2014;32(22):2304–10.

    Article  Google Scholar 

  10. Dromain C, Balleyguier C, Adler G, Garbay JR, Delaloge S. Contrast-enhanced digital mammography. Eur J Radiol. 2009;69(1):34–42. https://doi.org/10.1016/j.ejrad.2008.07.035.

    Article  PubMed  Google Scholar 

  11. Fallenberg EM, Schmitzberger FF, Amer H, et al. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation. Eur Radiol. 2017;27(7):2752–64. https://doi.org/10.1007/s00330-016-4650-6.

    Article  PubMed  Google Scholar 

  12. Ghaderi KF, Phillips J, Perry H, Lotfi P, Mehta TS. Contrast-enhanced mammography: current applications and future directions. Radiographics. 2019;39(7):1907–20.

    Article  Google Scholar 

  13. Prionas ND, Lindfors KK, Ray S, Huang SY, Beckett LA, Monsky WL, et al. Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology. 2010;256(3):714–23.

    Article  Google Scholar 

  14. Houssami N, Lee CI, Buist DSM, Tao D. Artificial intelligence for breast cancer screening: opportunity or hype? Breast. 2017;36:31–3. https://doi.org/10.1016/j.breast.2017.09.003. Epub 2017 Sep 20. PMID: 28938172

    Article  PubMed  Google Scholar 

  15. Bush V. As we may think. The Atlantic Monthly. 1945 July.

    Google Scholar 

  16. Turing A. Computing machinery and intelligence. Mind. 1950;49:433–60.

    Article  Google Scholar 

  17. Spyropoulos B, Papagounos G. A theoretical approach to artificial intelligence systems in medicine. Artif Intell Med. 1995;7(5):455–65. https://doi.org/10.1016/0933-3657(95)00015-x. PMID: 8547968

    Article  CAS  PubMed  Google Scholar 

  18. Paquerault S, Hardy PT, Wersto N, Chen J, Smith RC. Investigation of optimal use of computer-aided detection systems: the role of the “machine” in decision making process. Acad Radiol. 2010;17(9):1112–21. https://doi.org/10.1016/j.acra.2010.04.010. Epub 2010 Jun 3. PMID: 20605489

    Article  PubMed  Google Scholar 

  19. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Breast cancer surveillance consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37. https://doi.org/10.1001/jamainternmed.2015.5231. PMID: 26414882; PMCID: PMC4836172

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rao VM, Levin DC, Parker L, Cavanaugh B, Frangos AJ, Sunshine JH. How widely is computer-aided detection used in screening and diagnostic mammography? J Am Coll Radiol. 2010;7(10):802–5. https://doi.org/10.1016/j.jacr.2010.05.019. PMID: 20889111

    Article  PubMed  Google Scholar 

  21. Onega T, Aiello Bowles EJ, Miglioretti DL, Carney PA, Geller BM, Yankaskas BC, Kerlikowske K, Sickles EA, Elmore JG. Radiologists’ perceptions of computer aided detection versus double reading for mammography interpretation. Acad Radiol. 2010;17(10):1217–26. https://doi.org/10.1016/j.acra.2010.05.007. PMID: 20832024; PMCID: PMC3149895

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe MJ, Pisano ED. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. AJR Am J Roentgenol. 2014;203(4):909–16. https://doi.org/10.2214/AJR.12.10187. PMID: 25247960; PMCID: PMC4286296

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008;35(12):5799–820. https://doi.org/10.1118/1.3013555. PMID: 19175137; PMCID: PMC2673617

    Article  PubMed  PubMed Central  Google Scholar 

  24. Breast Cancer Surveillance Consortium (BCSC). Performance measures for 1,838,372 screening mammography examinations from 2004 to 2008 by age–based on BCSC data through 2009. National Cancer Institute. 2009.

    Google Scholar 

  25. Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc. 2017;24(2):361–70. https://doi.org/10.1093/jamia/ocw112. PMID: 27521897; PMCID: PMC5391725

    Article  PubMed  Google Scholar 

  26. Ha R, Chang P, Karcich J, Mutasa S, Pascual Van Sant E, Liu MZ, Jambawalikar S. Convolutional neural network based breast cancer risk stratification using a mammographic dataset. Acad Radiol. 2019;26(4):544–9. https://doi.org/10.1016/j.acra.2018.06.020. Epub 2018 Jul 31. PMID: 30072292

    Article  PubMed  Google Scholar 

  27. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77. https://doi.org/10.1148/radiol.2015151169. Epub 2015 Nov 18. PMID: 26579733; PMCID: PMC4734157

    Article  PubMed  Google Scholar 

  28. Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer. 2005;103(9):1778–84. https://doi.org/10.1002/cncr.20979. PMID: 15770688

    Article  PubMed  Google Scholar 

  29. Sanders ME, Schuyler PA, Simpson JF, Page DL, Dupont WD. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol. 2015;28(5):662–9. https://doi.org/10.1038/modpathol.2014.141. Epub 2014 Dec 12. PMID: 25502729; PMCID: PMC4416977

    Article  PubMed  Google Scholar 

  30. Coxson HO, Hogg JC, Mayo JR, Behzad H, Whittall KP, Schwartz DA, Hartley PG, Galvin JR, Wilson JS, Hunninghake GW. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology. Am J Respir Crit Care Med. 1997;155(5):1649–56. https://doi.org/10.1164/ajrccm.155.5.9154871. PMID: 9154871

    Article  CAS  PubMed  Google Scholar 

  31. Hunninghake GW, Zimmerman MB, Schwartz DA, King TE Jr, Lynch J, Hegele R, Waldron J, Colby T, Müller N, Lynch D, Galvin J, Gross B, Hogg J, Toews G, Helmers R, Cooper JA Jr, Baughman R, Strange C, Millard M. Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001;164(2):193–6. https://doi.org/10.1164/ajrccm.164.2.2101090. PMID: 11463586

    Article  CAS  PubMed  Google Scholar 

  32. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GC, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam JR, Melnick D, Mostofi H, Peng L, Reicher JJ, Romera-Paredes B, Sidebottom R, Suleyman M, Tse D, Young KC, De Fauw J, Shetty S. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6. Epub 2020 Jan 1. PMID: 31894144

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst. 2019;111(9):916–22. https://doi.org/10.1093/jnci/djy222. PMID: 30834436; PMCID: PMC6748773

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avice M. O’Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Connell, A.M., Kawakyu-O’Connor, D. (2021). Emerging Technologies in Breast Cancer Screening and Diagnosis. In: Shetty, M.K. (eds) Breast & Gynecological Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-69476-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69476-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69475-3

  • Online ISBN: 978-3-030-69476-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics