Skip to main content

Computational Screening of Organic Dye-Sensitizers for Dye-Sensitized Solar Cells: DFT/TDDFT Approach

  • Chapter
  • First Online:
Development of Solar Cells

Abstract

Dye-sensitized solar cells (DSSCs) represent a promising third-generation photovoltaic technology due to their ease in fabrication, low cost, ability to operate in diffused light, flexibility, and being lightweight. Organic dye-sensitizers are vital components of the DSSCs. Comprehensive theoretical study of the dye’s spectroscopic properties, including excitation energies ground- and excited-state oxidation potential, allows to design and screen organic dye-sensitizers for an efficient DSSC. Density functional theory (DFT) and time-dependent DFT (TDDFT) approaches have been efficiently used to estimate different optoelectronic properties of sensitizers. This chapter outlined the use of the DFT and TDDFT framework to design organic dye-sensitizers for DSSCs to predict different photophysical properties. Prediction of essential factors such as short-circuit current density (\({J}_{SC}\)), open-circuit voltage (\({V}_{OC}\)), along with charge transfer phenomena, will help experimental groups to fabricate DSSCs with higher photoconversion efficiency (PCE). Besides, this chapter includes a basic understanding of the mechanism of DSSCs, based on the energetics of the various constituents of the heterogeneous device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Service RF (2005) Solar energy. Is it time to shoot for the sun? Science (New York, NY) 309:548–51

    Google Scholar 

  2. Potocnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science (New York, NY) 315:810–811

    Article  CAS  Google Scholar 

  3. REN21 (2019) Global Status Report, Paris: REN21 Secretariat. https://www.ren21.net/reports/global-status-report/. Accessed 28 August 2020

  4. Rahn Kim M, Ma D (2014) Quantum-dot-based solar cells: recent advances, strategies, and challenges. J Phys Chem Lett 6:85–99

    Google Scholar 

  5. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  6. Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177:347–414

    Article  CAS  Google Scholar 

  7. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  CAS  PubMed  Google Scholar 

  8. Roy JK, Kar S, Leszczynski J (2019) Electronic structure and optical properties of designed photo-efficient indoline-based dye-sensitizers with D−A−π–A framework. J Phys Chem C 123:3309–3320

    Article  CAS  Google Scholar 

  9. Shibayama N, Inoue Y, Abe M, Kajiyama S, Ozawa H, Miura H, Arakawa H (2015) Novel near-infrared carboxylated 1,3-indandione sensitizers for highly efficient flexible dye-sensitized solar cells. Chem Commun 51:12795–12798

    Article  CAS  Google Scholar 

  10. Zhang W, Wu Y, Zhu H, Chai Q, Liu J, Li H, Song X, Zhu W-H (2015) Rational molecular engineering of indoline-based D−A−π−A organic sensitizers for long-wavelength-responsive dye-sensitized solar cells. ACS Appl Mater Interfaces 7:26802–26810

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Zhu W (2013) Organic sensitizers from D–π–A to D−A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem Soc Rev 42:2039–2058

    Article  PubMed  Google Scholar 

  12. Aono C, Minoru D, Coutinho-Neto M, Miotto R, Homem-de-Mello P (2018) CAHM1: a theory-based proposal for a new DSSC D–A−π–A dye. J Phys Chem C 122:27256–2726

    Google Scholar 

  13. Roy JK, Kar S, Leszczynski J (2020) Revealing the photophysical mechanism of N,N′-diphenyl-aniline based sensitizers with the D−D−π–A framework: theoretical insights. ACS Sustain Chem Eng 8:13328−13341

    Google Scholar 

  14. Hagberg DP, Yum JH, Lee HJ, de Angelis F, Marinado T, Karlsson KM, Humphry-Baker R, Sun L, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J Am Chem Soc 130:6259–6266

    Article  CAS  PubMed  Google Scholar 

  15. Capodilupo AL, de Marco L, Corrente GA, Giannuzzi R, Fabiano E, Cardone A, Gigli G, Ciccarella G (2016) Synthesis and characterization of a new series of dibenzofulvene based organic dyes for DSSCs. Dyes Pigm 130:79–89

    Article  CAS  Google Scholar 

  16. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  17. Ozawa H, Sugiura T, Kuroda T, Nozawa K, Arakawa H (2016) Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand. J Mater Chem a 4:1762–1770

    Article  CAS  Google Scholar 

  18. Pastore M, Mosconi E, de Angelis F, Grätzel M (2010) A computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem C 114:7205–7212

    Article  CAS  Google Scholar 

  19. Pastore M, Fantacci S, de Angelis F (2010) Ab initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114:22742–22750

    Article  CAS  Google Scholar 

  20. Martsinovich N, Troisi A (2011) Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ Sci 4:4473

    Article  CAS  Google Scholar 

  21. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science (New York, NY) 334:629–634

    Article  CAS  Google Scholar 

  22. Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ Sci 5:6057

    Article  CAS  Google Scholar 

  23. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  PubMed  Google Scholar 

  24. Wang M, Chamberland N, Breau L, Moser J-E, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2:385–389

    Article  CAS  PubMed  Google Scholar 

  25. Sauvage F (2014) A review on current status of stability and knowledge on liquid electrolyte-based dye-sensitized solar cells. Adv Chem 2014:1–23

    Article  Google Scholar 

  26. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  PubMed  Google Scholar 

  27. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  PubMed  Google Scholar 

  28. Anselmi C, Mosconi E, Pastore M, Ronca E, de Angelis F (2012) Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Phys Chem Chem Phys 14:15963

    Article  CAS  PubMed  Google Scholar 

  29. Muñoz-García AB, Pavone M (2015) Structure and energy level alignment at the dye-electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations. Phys Chem Chem Phys 17:12238–12246

    Article  PubMed  Google Scholar 

  30. Ding WL, Wang DM, Geng ZY, Zhao XL, Yan YF (2013) Molecular engineering of indoline-based D-A-π-A organic sensitizers toward high efficiency performance from first-principles calculations. J Phys Chem C 117:17382–17398

    Article  CAS  Google Scholar 

  31. Pastore M, Fantacci S, de Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117:3685–3700

    Article  CAS  Google Scholar 

  32. Kar S, Roy JK, Leszczynski J (2017) In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future. NPJ Comput Mater 3:22

    Google Scholar 

  33. Roy JK, Kar S, Leszczynski J (2018) Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO2(101) surface: first principles approach. Sci Rep 8:10997

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453

    Article  CAS  PubMed  Google Scholar 

  35. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl 48:2474–2499

    Article  CAS  PubMed  Google Scholar 

  36. Chen CJ, Zhang J, Fu ZH, Zhu HC, Li H, Zhu XF (2019) Theoretical insights on the comparison of champion dyes SM315 and C275 used for DSSCs reaching over 12% efficiency and the further optimization of C275. Spectrochim Acta - Part A: Mol Biomol Spectrosc 222:117217

    Article  CAS  Google Scholar 

  37. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2006) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111:1035–1041

    Article  Google Scholar 

  38. Baumann A, Watson J, Delcamp JH (2019) Robust, scalable synthesis of the bulky hagfeldt donor for dye-sensitized solar cells. Chemsuschem 12:1–5

    Google Scholar 

  39. le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506

    Article  PubMed  Google Scholar 

  40. Jacquemin D, le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383

    Article  CAS  PubMed  Google Scholar 

  41. Marcus RAR (1993) Electron transfer reactions in chemistry. Theory and experiment. J Electroanal Chem 438:251–259

    Article  Google Scholar 

  42. Ning Z, Fu Y, Tian H, Brabec CJ, Erk P, Hagfeldt A, Weis J, Pschirer N, Hagfeldt A, Hammarström L, Grätzel M, Durrant JR, Bignozzi CA, Grätzel M (2010) Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3:1170

    Article  CAS  Google Scholar 

  43. Sharmoukh W, Cong J, Gao J, Liu P, Daniel Q, Kloo L (2018) Molecular engineering of D–D–π–A-based organic sensitizers for enhanced dye-sensitized solar cell performance. ACS Omega 3:3819–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  45. Marinado T, Nonomura K, Nissfolk J, MartinK K, Hagberg DP, Sun L, Mori S, Hagfeldt A (2009) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26:2592–2598

    Article  Google Scholar 

  46. Kono T, Masaki N, Nishikawa M, Tamura R, Matsuzaki H, Kimura M, Mori S (2016) Interfacial charge transfer in dye-sensitized solar cells using SCN-free terpyridine-coordinated Ru complex dye and Co complex redox couples. ACS Appl Mater Interfaces 8:16677–16683

    Article  CAS  PubMed  Google Scholar 

  47. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 109:18907–18913

    Article  PubMed  Google Scholar 

  48. Ronca E, Pastore M, Belpassi L, Tarantelli F, de Angelis F, Snijders JG, Ziegler T, Kay A, Zakeeruddin SM, Grätzel M, Nazeeruddin MK, Grätzel M (2013) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy Environ Sci 6:183–193

    Article  CAS  Google Scholar 

  49. Li P, Cui Y, Song C, Zhang H (2017) A systematic study of phenoxazine-based organic sensitizers for solar cells. Dyes Pigm 137:12–23

    Article  CAS  Google Scholar 

  50. Chen P, Yum JH, de Angelis F, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MdK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9:2487–2492

    Article  CAS  PubMed  Google Scholar 

  51. Raga SR, Barea EM, Fabregat-Santiago F (2012) Analysis of the origin of open circuit voltage in dye solar cells. J Phys Chem Lett 3:1629–1634

    Article  CAS  PubMed  Google Scholar 

  52. Richards CE, Anderson AY, Martiniani S, Law C, O’Regan BC (2012) The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells. J Phys Chem Lett 3:1980–1984

    Article  CAS  Google Scholar 

  53. Xu B, Li Y, Song P, Ma F, Sun M (2017) Photoactive layer based on T-shaped benzimidazole dyes used for solar cell: from photoelectric properties to molecular design. Sci Rep 7:45688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berardo E, Kaplan F, Bhaskaran-Nair K, Shelton WA, van Setten MJ, Kowalski K, Zwijnenburg MA (2017) Benchmarking the fundamental electronic properties of small TiO2 nanoclusters by GW and coupled cluster theory calculations. J Chem Theory Comput 13:3814–3828

    Article  CAS  PubMed  Google Scholar 

  55. Sahai N, Rosso KM (2006) Computational molecular basis for improved silica surface complexation models. In: Lützenkirchen J (ed) Surface complexation modelling. Elsevier, Amsterdam, Netherlands, pp 359–396

    Chapter  Google Scholar 

  56. Zhang W, Heng P, Su H, Ren T, Wang L, Zhang J (2018) Rational design of high-efficiency organic dyes in dye-sensitized solar cells by multiscale simulations. J Phys Chem C 122:25219–25228

    Article  CAS  Google Scholar 

  57. Chiu C-C, Sheng Y-C, Lin W-J, Juwita R, Tan C-J, Tsai H-HG (2018) Effects of internal electron-withdrawing moieties in D–A–π–A organic sensitizers on photophysical properties for DSSCs: a computational study. ACS Omega 3:433–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muscat JP, Newns DM (1978) Chemisorption on metals. Prog Surf Sci 9:1–43

    Article  CAS  Google Scholar 

  59. Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theory Comput 2:441–451

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of this work from the National Science Foundation under Grant Number NSF OIA-1757220 and the Department of Energy under Grant Number DE-SC0018322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, J.K., Kar, S., Leszczynski, J. (2021). Computational Screening of Organic Dye-Sensitizers for Dye-Sensitized Solar Cells: DFT/TDDFT Approach. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_8

Download citation

Publish with us

Policies and ethics