Skip to main content

Application of QSPR Modeling in Designing and Prediction of Power Conversion-Efficient Solar Cell

  • Chapter
  • First Online:
Development of Solar Cells

Abstract

The advancement of technology and industrialization demands clean, economic, and reliable energy sources that can be fulfilled by high-volume and power-efficient production of solar cells. To speed up the solar cell development process in a rational way, in the last decade, molecular modeling and machine learning (ML) have shown enough potential to accomplish this task. Especially, quantitative structure–property relationships (QSPRs) modeling has reported designing of promising lead components for diverse solar cell systems with higher power conversion efficiency (%PCE) than the existing ones. Until now, most of the QSPR models have been employed for dye-sensitized solar cells (DSSCs) and polymer solar cells (PSCs) followed by designing acceptor and donor components of these systems. But this chapter also encourages the future application of QSPR for quantum dot solar devices (QDSC’s), perovskite solar cells to improve their efficiency further. The present chapter deals with the role of QSPR modeling in solar cells and discusses how QSPR can be implemented in solar cell designing as well as the virtual screening of materials databases. Additionally, solar cell databases and preparation of webserver for future prediction of %PCE, along with other photophysical parameters, are meticulously discussed to provide an easy start for the beginners. Successful QSPR models for DSSCs and PSCs are also illustrated with detailed modeling information followed by mechanistic introspection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. REN21 (2019) Global Status Report, Paris:REN21 Secretariat. https://www.ren21.net/reports/global-status-report/. Accessed 20 Aug 2020

  2. Kammen DM (2006) The rise of renewable energy. Sci Am 295:84–93

    Article  Google Scholar 

  3. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640

    Article  CAS  Google Scholar 

  4. Regan BO, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Google Scholar 

  5. Choi I, Ju M, Kang S, Kang M, You B, Hong J, Kim HK (2013) Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells. J Mater Chem A 32:9114–9121

    Article  Google Scholar 

  6. Zhang L, Yang X, Wang W, Gurzadyan GG, Li J, Li X, An J, Yu Z, Wang H, Cai B, Hagfeldt A, Sun L (2019) 13.6% Efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett 4:943–951

    Article  CAS  Google Scholar 

  7. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MdK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  8. Lee Y-L, Lo Y-S (2009) Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Adv Funct Mater 19:604–609

    Article  Google Scholar 

  9. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  10. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  11. Hagfeldt H, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-Sensitized Solar Cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  12. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, Amsterdam

    Google Scholar 

  13. Pastore M, Fantacci S, De Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C117:3685–3700

    Google Scholar 

  14. Zhang S, Yang X, Numata Y, Han L (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6:1443–1464

    Article  Google Scholar 

  15. Li H, Zhong Z, Li L, Gao R, Cui J, Gao T, Hu LH, Lu Y, Su Z-H, Hui L (2015) A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells. J Comput Chem 36:1036–1046

    Article  CAS  Google Scholar 

  16. Kar S, Sizochenko N, Ahmed L, Batista VS, Leszczynski J (2016) Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: exploring structural attributes critical for photoconversion efficiency of polymer solar cell acceptors. Nano Energy 26:677–691

    Article  CAS  Google Scholar 

  17. Venkatraman V, Astrand P-O, Alsberg BK (2014) Quantitative Structure-Property Relationship Modeling of Grӓtzel Solar Cell Dyes. J Comput Chem 35:214–226

    Article  CAS  Google Scholar 

  18. Kar S, Roy JK, Leszczynski J (2017) In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future. npj Comput Mater 3:22

    Google Scholar 

  19. Venkatraman V, Alsberg BK (2015) A quantitative structure-property relationship study of the photovoltaic performance of phenothiazine dyes. Dyes Pigm 114:69–77

    Article  CAS  Google Scholar 

  20. Venkatraman V, Foscato M, Jensen VR, Alsberg BK (2015) Evolutionary de novo design of phenothiazine derivatives for dye-sensitized solar cells. J Mater Chem A 3:9851–9860

    Article  CAS  Google Scholar 

  21. Kar S, Roy JK, Leszczynska D, Leszczynski J (2017) Power conversion efficiency of arylamine organic dyes for dye-sensitized solar cells (DSSCs) explicit to cobalt electrolyte: understanding the structural attributes using a direct QSPR approach. Computation 5:2

    Article  Google Scholar 

  22. Roy JK, Kar S, Leszczynski J (2018) Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO2(101) surface: first principles approach. Sci Rep 8:10997

    Article  Google Scholar 

  23. Roy JK, Kar S, Leszczynski J (2019) Electronic Structure and Optical Properties of Designed Photo-Efficient Indoline-Based Dye-Sensitizers with D-A–π–A Framework. J Phys Chem C 123:3309–3320

    Article  CAS  Google Scholar 

  24. Krishna JG, Ojha PK, Kar S, Roy K, Leszczynski J (2020) Chemometric modeling of power conversion efficiency of organic dyes in dye sensitized solar cells for the future renewable energy. Nano Energy 70:

    Article  CAS  Google Scholar 

  25. Pourbasheer E, Banaei A, Aalizadeh R, Ganjali MR, Norouzi P, Shadmanesh J, Methenitis C (2015) Prediction of %PCE of fullerene (C60) derivatives as polymer solar cell acceptors by genetic algorithm–multiple linear regression. J Ind Eng Chem 21:1058–1067

    Article  CAS  Google Scholar 

  26. Roy JK, Kar S, Leszczynski J (2019) Optoelectronic properties of C60 and C70 fullerene derivatives: designing and evaluating novel candidates for efficient P3HT polymer solar cells. Materials 12:2282

    Article  CAS  Google Scholar 

  27. Xu J, Zhang H, Wang L, Liang G, Wang L, Shen X, Xu W (2010) QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors. Spectrochimica Acta Part A 76:239–247

    Article  Google Scholar 

  28. Xu J, Zhang H, Wang L, Liang G, Wang L, Shen X (2011) Artificial neural network-based QSPR study on absorption maxima of organic dyes for dye-sensitised solar cells. Mol Simulat 37:1–10

    Article  Google Scholar 

  29. Cooper CB, Beard EJ, Vázquez-Mayagoitia Á, Stan L, Stenning GBG, Nye DW, Vigil JA, Tomar T, Jia J, Bodedla GB, Chen S, Gallego L, Franco S, Carella A, Thomas KRJ, Xue S, Zhu X, Cole JM (2019) Design-to-device approach affords panchromatic co-sensitized solar cells. Adv Energy Mater 9:1970014

    Article  Google Scholar 

  30. Yap CW (2011) PaDEL-Descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  Google Scholar 

  31. DRAGON software. http://www.talete.mi.it/products/dragon_description.htm

  32. ChemAxon software. https://www.chemaxon.com

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Wallingford CT 121:150–166

    Google Scholar 

  34. Stewart JJ (1990) MOPAC: a semiempirical molecular orbital program. J Comput-Aid Mol Des 4:1–103

    Article  Google Scholar 

  35. DTC lab Software Tools. http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/. Accessed 20 Aug 2020

  36. Gramatica P, Chirico N, Papa E, Kovarich S, Cassani S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    Article  CAS  Google Scholar 

  37. Frank E, Hall MA, Witten IH (2016) The WEKA Workbench. Online appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th edn. Morgan Kaufmann

    Google Scholar 

  38. Roy JK, Kar S, Leszczynski J (2020) Revealing the Photophysical Mechanism of N, N′-dialkyl/phenyl-aniline based Sensitizers with D-D––A Framework: Theoretical Insights. ACS Sustain Chem Eng (In press). https://doi.org/10.1021/acssuschemeng.0c04061

    Article  Google Scholar 

  39. Banerjee P, Erehman J, Gohlke B-O, Wilhelm T, Preissner R, Dunkel M (2015) Super natural II–a database of natural products. Nucleic Acids Res 43:D935–D939

    Article  CAS  Google Scholar 

  40. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Article  CAS  Google Scholar 

  41. Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, Cathey T, Transue TR, Spencer R, Wolf M (2008) ACToR-aggregated computational toxicology resource. Toxicol Appl Pharm 233:7–13

    Article  CAS  Google Scholar 

  42. Wullenweber A, Kroner O, Kohrman M, Maier A, Dourson M, Rak A, Wexler P, Tomljanovic C (2008) Resources for global risk assessment: The International Toxicity Estimates for Risk (ITER) and Risk Information Exchange (RiskIE) databases. Toxicol Appl Pharm 233:45–53

    Article  CAS  Google Scholar 

  43. NPIRS database: http://npirspublic.ceris.purdue.edu/ppis/. Accessed 20 Aug 2020

  44. PAN database: http://www.pesticideinfo.org/. Accessed 20 Aug 2020

  45. Venkatraman V, Raju R, Oikonomopoulos SP, Alsberg BK (2018) The dye-sensitized solar cell database. J Cheminformatics 10:18

    Article  Google Scholar 

  46. Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sánchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849–4861

    Article  CAS  Google Scholar 

  47. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu AP, Cao DS (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminformatics 10:29

    Article  Google Scholar 

  48. Yang HB, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069

    Article  CAS  Google Scholar 

  49. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  Google Scholar 

  50. Sosnowska A, Grzonkowska M, Puzyn T (2017) Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: The predictive ability. J Mol Liq 231:333–340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Energy (grant number: DE-SC0018322) and the NSF EPSCoR (grant number: OIA-1757220) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kar, S., Roy, J.K., Leszczynski, J. (2021). Application of QSPR Modeling in Designing and Prediction of Power Conversion-Efficient Solar Cell. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_7

Download citation

Publish with us

Policies and ethics