Skip to main content

Delving Charge-Transfer Excitations in Hybrid Organic–Inorganic Hetero Junction of Dye-Sensitized Solar Cell: Assessment of Excitonic Optical Properties Using the GW and Bethe–Salpeter Green’s Function Formalisms

  • Chapter
  • First Online:
Development of Solar Cells

Abstract

First-principles modeling of charge-neutral excitations with the recognition of charge-transfer and Rydberg states and probing the mechanism of charge-carrier generation from the photoexcited electron–hole pair for the hybrid organic–inorganic photovoltaic materials remain as a cornerstone problem within the framework of time-dependent density functional theory (TDDFT) . The many-body Green’s function Bethe–Salpeter formalism based on a Dyson-like equation for the two-particle correlation function, which accounts for the exchange and attractive screened Coulomb interactions between photoexcited electrons and holes, has emerged as a decent approach to study the photoemission properties including the Frenkel and charge-transfer excitations in an assortment of finite and extended systems of optoelectronic materials. The key ideas of practical implementation of Bethe–Salpeter equation (BSE) involving the computations of single-particle states, quasi-particle energy levels, and the screened Coulomb interaction with the aid of Gaussian atomic basis sets and resolution-of-identity techniques are discussed. The work revisits the computational aspects for the evaluation of electronic, spectroscopic, and photochromic properties of the dye-sensitized solar cell (DSSC) constituents by considering the excitonic effects that renormalize the energy levels and coalesce the single-particle transitions. The most recent advancements in theoretical methods that employ the maximally localized Wannier’s function (MLWF) and curtail the overall scaling of BSE calculations are also addressed, and the viable applications are subsequently illustrated with selected examples. Finally, the review reveals some computational challenges that need to be resolved to expand the applicability of BSE in designing solar cell materials, and to unravel the intricate mechanism of ultrafast excited-state processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salafsky JS (1999) Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites. Phys Rev B 59(16):10885

    Article  CAS  Google Scholar 

  2. Yu Q, Wang Y, Yi Z, Zu N, Zhang J, Zhang M, Wang P (2010) High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4(10):6032–6038

    Article  CAS  PubMed  Google Scholar 

  3. Brauer JC, Marchioro A, Paraecattil AA, Oskouei AA, Moser JE (2015) Dynamics of interfacial charge transfer states and carriers separation in dye-sensitized solar cells: a time-resolved terahertz spectroscopy Study. J Phys Chem C 119(47):26266–26274

    Article  CAS  Google Scholar 

  4. Pastore M, Mosconi E, Angelis FD, Grätzel M (2010) A Computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem C 114(15):7205–7212

    Article  CAS  Google Scholar 

  5. Bernini C, Zani L, Calamante M, Reginato G, Mordini A, Taddei M, Basosi R, Sinicropi A (2014) Excited state geometries and vertical emission energies of solvated dyes for DSSC: a PCM/TD-DFT benchmark Study. J Chem Theory Comput 10(9):3925–3933

    Article  CAS  PubMed  Google Scholar 

  6. Samanta PN, Majumdar D, Roszak S, Leszczynski J (2020) First-principles approach for assessing cold electron injection efficiency of dye-sensitized solar cell: elucidation of mechanism of charge injection and recombination. J Phys Chem C 124(5):2817–2836

    Article  CAS  Google Scholar 

  7. Casida ME (2009) Time-dependent density-functional theory for molecules and molecular solids. J Mol Struct (THEOCHEM) 914(1–3):3–18

    Article  CAS  Google Scholar 

  8. Botti S, Sottile F, Vast N, Olevano V, Reining L, Weissker H-C, Rubio A, Onida G, Sole RD, Godby RW (2004) Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory. Phys Rev B 69(15):155112

    Article  Google Scholar 

  9. Sottile F, Marsili M, Olevano V, Reining L (2007) Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semiconductors and insulators. Phys Rev B 76(16):161103(R)

    Article  Google Scholar 

  10. Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. J Am Chem Soc 126(12):4007–4016

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez-de-Armas R, Miguel MAS, Oviedo J, Sanz JF (2012) Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Phys Chem Chem Phys 14(1):225–233

    Article  PubMed  Google Scholar 

  12. Kurashige Y, Nakajima T, Kurashige S, Hirao K, Nishikitani Y (2007) Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells. J Phys Chem A 111(25):5544–5548

    Article  CAS  PubMed  Google Scholar 

  13. Wonga BM, Cordaro JG (2008) Coumarin dyes for dye-sensitized solar cells: a long-range-corrected density functional study. J Chem Phys 129(21):214703

    Article  Google Scholar 

  14. Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J Chem Phys 131(24):244119

    Article  PubMed  Google Scholar 

  15. Chiu C-C, Sheng Y-C, Lin W-J, Juwita R, Tan C-J, Tsai H-HG (2018) Effects of internal electron-withdrawing moieties in D-A-π-A organic sensitizers on photophysical properties for DSSC: a computational study. ACS Omega 3(1):443–445

    Article  Google Scholar 

  16. Yang Z, Liu C, Li K, Cole JM, Shao C, Cao D (2018) Rotational design of dithienopicenocarbazole-based dyes and a prediction of their energy-conversion efficiency characteristics for dye-sensitized solar cells. ACS Appl Energy Mater 1(4):1435–1444

    Article  CAS  Google Scholar 

  17. Wen Y, Yang H, Zheng D, Sun K, Wang L, Zhang J (2017) First-principles and molecular dynamics on A-D(π)-A type sensitizers for dye-sensitized solar cells: effects of various anchoring groups on electronic coupling and dye-aggregation. J Phys Chem C 121(26):14019–14026

    Article  CAS  Google Scholar 

  18. Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q, Lu W, Pan D, Wei Z (2015) Theoretical study of WS-9-based organic sensitizers for unusual Vis/NIR absorption and highly efficient dye-sensitized solar cells. J Phys Chem C 119(18):9782–9790

    Article  CAS  Google Scholar 

  19. Ronca E, Marotta G, Pastore M, Angelis FD (2014) Effect of sensitizer structure and TiO2 protonation on charge generation in dye-sensitized solar cells. J Phys Chem C 118(30):16927–16940

    Article  CAS  Google Scholar 

  20. Sun P-P, Li Q-S, Yang L-N, Sun Z-Z, Li Z-S (2014) Theoretical investigation on structural and electronic properties of organic dye C258 on TiO2(101) surface in dye-sensitized solar cells. Phys Chem Chem Phys 16(39):21827–21837

    Article  CAS  PubMed  Google Scholar 

  21. Ma W, Jiao Y, Meng S (2014) Predicting energy conversion efficiency of dye solar cells from first principles. J Phys Chem C 118(30):16447–16457

    Article  CAS  Google Scholar 

  22. Pastore M, Fantacci S, Angelis FD (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700

    Article  CAS  Google Scholar 

  23. Angelis FD (2014) Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Acc Chem Res 47(11):3349–3360

    Article  PubMed  Google Scholar 

  24. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659

    Article  CAS  Google Scholar 

  25. Jacquemin D, Mennucci B, Adamo C (2011) Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys Chem Chem Phys 13(38):16987–16998

    Article  CAS  PubMed  Google Scholar 

  26. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. J Chem Phys 124(12):124520

    Article  PubMed  Google Scholar 

  27. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127(7):074504

    Article  PubMed  Google Scholar 

  28. Marenich AV, Cramer CJ, Truhlar DG, Guido CG, Mennucci B, Scalmani G, Frisch MJ (2011) Practical computation of electronic excitation in solution: vertical excitation model. Chem Sci 2(11):2143–2161

    Article  CAS  Google Scholar 

  29. Rinkevicius Z, Tunell I, Salek P, Vahtras O, Ågren H (2003) Restricted density functional theory of linear time-dependent properties in open-shell molecules. J Chem Phys 119(1):34–46

    Article  CAS  Google Scholar 

  30. Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. J Chem Phys 126(8):084509–1–13

    Google Scholar 

  31. Santoro F, Lami A, Improta R, Barone V (2007) Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J Chem Phys 126(18):184102

    Article  PubMed  Google Scholar 

  32. de Souza B, Farias G, Neese F, Izsák R (2019) Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J Chem Theory Comput 15(3):1896–1904

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tozer DJ, Handy NC (1998) Improving virtual Kohn−Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 109(23):10180–10189

    Article  CAS  Google Scholar 

  34. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113(17):2019–2039

    Article  CAS  Google Scholar 

  35. Le Guennic B, Jacquemin D (2015) Taking up the cyanine challenge with quantum tools. Acc Chem Res 48(3):530–537

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mewes SA, Plasser F, Krylov A, Dreuw A (2018) Benchmarking excited-state calculations using exciton properties. J Chem Theory Comput 14(2):710–725

    Article  CAS  PubMed  Google Scholar 

  37. Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796

    Article  Google Scholar 

  38. Strinati G, Mattausch HJ, Hanke W (1980) Dynamical correlation effects on the quasiparticle bloch states of a covalent crystal. Phys Rev Lett 45(4):290

    Article  CAS  Google Scholar 

  39. Strinati G, Mattausch HJ, Hanke W (1982) Dynamical aspects of correlation corrections in a covalent crystal. Phys Rev B 25(4):2867

    Article  CAS  Google Scholar 

  40. Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34(8):5390

    Article  CAS  Google Scholar 

  41. Godby RW, Schlüter M, Sham LJ (1988) Self-energy operators and exchange-correlation potentials in semiconductors. Phys Rev B 37(17):10159

    Article  CAS  Google Scholar 

  42. Strinati G (1986) Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv Nuovo Cim 11(12):1–86

    Article  Google Scholar 

  43. Rohlfing M, Louie SG (1998) Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters. Phys Rev Lett 80(15):3320

    Article  CAS  Google Scholar 

  44. Benedict LX, Shirley EL, Bohn RB (1998) Optical absorption of insulators and the electron-hole interaction: an ab initio calculation. Phys Rev Lett 80(20):4514

    Article  CAS  Google Scholar 

  45. Albrecht S, Reining L, Del Sole R, Onida G (1998) Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 80(20):4510

    Article  CAS  Google Scholar 

  46. Marom N, Moussa JE, Ren X, Tkatchenko A, Chelikowsky JR (2011) Electronic structure of dye-sensitized TiO2 clusters from many-body perturbation theory. Phys Rev B 84(24):245115

    Article  Google Scholar 

  47. Patrick CE, Giustino F (2012) Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor Interfaces. Phys Rev Lett 109(11):116801

    Article  PubMed  Google Scholar 

  48. Escudero D, Duchemin I, Blase X, Jacquemin D (2017) Modeling the photochrome−TiO2 interface with bethe−salpeter and time-dependent density functional theory methods. J Phys Chem Lett 8(5):936–940

    Article  CAS  PubMed  Google Scholar 

  49. Blase X, Attaccalite C (2011) Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach. Appl Phys Lett 99(17):171909

    Article  Google Scholar 

  50. Baumeier B, Andrienko D, Rohlfing M (2012) Frenkel and charge-transfer excitations in donor–acceptor complexes from many-body green’s functions theory. J Chem Theory Comput 8(8):2790–2795

    Article  CAS  PubMed  Google Scholar 

  51. Duchemin I, Blase X (2013) Resonant hot charge-transfer excitations in fullerene-porphyrin complexes: many-body Bethe-Salpeter study. Phys Rev B 87(24):245412

    Article  Google Scholar 

  52. Verdi C, Mosconi E, Angelis FD, Marsili M, Umari P (2014) Alignment of energy levels in dye/semiconductor interfaces by GW calculations: effects due to coadsorption of solvent molecules. Phys Rev B 90(15):155410

    Article  Google Scholar 

  53. Marsili M, Mosconi E, Angelis FD, Umari P (2017) Large-scale GW-BSE calculations with N3 scaling: excitonic effects in dye-sensitized solar cells. Phys Rev B 95(7):075415

    Article  Google Scholar 

  54. Azarias C, Duchemin I, Blase X, Jacquemin D (2017) Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT. J Chem Phys 146(3):034301

    Article  PubMed  Google Scholar 

  55. Niedzialek D, Duchemin I, Branquinho de Queiroz T, Osella S, Rao A, Friend R, Blase X, Kümmel S, Beljonne D (2015) First principles calculations of charge transfer excitations in polymer-fullerene complexes: influence of excess energy. Adv Funct Mater 25(13):1287–1295

    Article  Google Scholar 

  56. Blase X, Attaccalite C, Olevano V (2011) First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 83(11):115103

    Article  Google Scholar 

  57. Blase X, Ducheminb I, Jacquemin D (2018) The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem Soc Rev 47(3):1022–1043

    Article  CAS  PubMed  Google Scholar 

  58. Thatribud A (2019) Electronic and optical properties of TiO2 by first-principle calculation (DFT-GW and BSE). Mater Res Express 6(9):095021

    Article  CAS  Google Scholar 

  59. Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S, Sato S (1994) Photoemission and bremsstrahlung Isochromat spectroscopy studies of TiO2 (Rutile) and SrTiO3. J Phys Soc Jpn 63(1):347–357

    Article  CAS  Google Scholar 

  60. Wang Z, Helmersson U, Käll PO (2002) Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films 405(1–2):50–54

    Article  CAS  Google Scholar 

  61. Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106(2–3):350–353

    Article  CAS  Google Scholar 

  62. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24(19):195503

    Article  CAS  PubMed  Google Scholar 

  63. Hosaka N, Sekiya T, Satoko C, Kurita S (1997) Optical properties of single-crystal anatase TiO2. J Phys Soc Jpn 66(3):877–880

    Article  CAS  Google Scholar 

  64. Faber C, Duchemin I, Deutsch T, Blase X (2012) Many-body Green’s function study of coumarins for dye-sensitized solar cells. Phys Rev B 86(15):155315

    Article  Google Scholar 

  65. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544

    Article  CAS  Google Scholar 

  66. Umari P, Giacomazzi L, Angelis FD, Pastore M, Baroni S (2013) Energy-level alignment in organic dyesensitized TiO2 from GW calculations. J Chem Phys 139(1):014709

    Article  CAS  PubMed  Google Scholar 

  67. Hahlin M, Odelius M, Magnuson M, Johansson EMJ, Plogmaker S, Hagberg DP, Sun L, Rensmo H (2011) Mapping the frontier electronic structures of triphenylamine based organic dyes at TiO2 interfaces. Phys Chem Chem Phys 13(8):3534–3546

    Article  CAS  PubMed  Google Scholar 

  68. Giannozzi P et al (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  69. Schierbaum KD, Fischer S, Torquemada MC, de Segovia JL, Román E, Martín-Gago JA (1996) The interaction of Pt with TiO2(110) surfaces: a comparative XPS, UPS, ISS, and ESD study. Surf Sci 345(3):261–273

    Article  CAS  Google Scholar 

  70. Xiong G, Shao R, Droubay T, Joly A, Beck K, Chambers S, Hess W (2007) Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv Funct Mater 17(13):2133–2138

    Article  CAS  Google Scholar 

  71. Mosconi E, Selloni A, Angelis FD (2012) Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO2: a first-principles investigation. J Phys Chem C 116(9):5932–5940

    Article  CAS  Google Scholar 

  72. Redmond G, Fitzmaurice D (1993) Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J Phys Chem 97(7):1426–1430

    Article  CAS  Google Scholar 

  73. Muscat JP, Newns DM (1978) Chemisorption on metals. Prog Surf Sci 9(1):1–43

    Article  CAS  Google Scholar 

  74. Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theory Comput 2(2):441–451

    Article  CAS  PubMed  Google Scholar 

  75. Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115(23):11781–11792

    Article  CAS  Google Scholar 

  76. Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106(15):3214–3234

    Article  CAS  Google Scholar 

  77. Le Bahers T, Labat F, Pauporté T, Ciofini I (2010) Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study. Phys Chem Chem Phys 12(44):14710–14719

    Article  PubMed  Google Scholar 

  78. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798

    Article  PubMed  Google Scholar 

  79. Fana SQ, Fanga B, Choia H, Paika S, Kima C, Jeonga BS, Kima JJ, Ko J (2010) Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochim Acta 55(15):4642–4646

    Article  Google Scholar 

  80. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, DeAngelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707

    Article  CAS  PubMed  Google Scholar 

  81. Kaplan F, Weigend F, Evers F, van Setten MJ (2016) Off-diagonal self-energy terms and partially self-consistency in GW calculations for single molecules: efficient implementation and quantitative effects on ionization potentials. J Chem Theory Comput 11(11):5152–5160

    Article  Google Scholar 

  82. Wilhelm J, Hutter J (2017) Periodic GW calculations in the Gaussian and plane-waves scheme. Phys Rev B 95(23):235123

    Article  Google Scholar 

  83. Blase X, Attaccalite C (2011) Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach. Appl Phys Lett 99(17):171909

    Google Scholar 

  84. Faber C, Attaccalite C, Olevano V, Runge E, Blase X (2011) First-principles GW calculations for DNA and RNA nucleobases. Phys Rev B 83(11):115123

    Article  Google Scholar 

  85. Faber C, Janssen JL, Côté M, Runge E, Blase X (2011) Electron-phonon coupling in the C60 fullerene within the many-body GW approach. Phys Rev B 84(15):155104

    Article  Google Scholar 

  86. Wilhelm J, Golze D, Talirz L, Hutter J, Pignedoli CA (2018) Toward GW Calculations on Thousands of Atoms. J Phys Chem Lett 9(2):306–312

    Article  CAS  PubMed  Google Scholar 

  87. Hung L, da Jornada FH, Souto-Casares J, Chelikowsky JR, Louie SG, Öğüt S (2016) Excitation spectra of aromatic molecules within a real-space GW-BSE formalism: Role of self-consistency and vertex corrections. Phys Rev B 94(8):085125

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Department of Energy (Grant number: DE-SC0018322) and the NSF EPSCoR (Grant number: OIA-1757220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, P.N., Leszczynski, J. (2021). Delving Charge-Transfer Excitations in Hybrid Organic–Inorganic Hetero Junction of Dye-Sensitized Solar Cell: Assessment of Excitonic Optical Properties Using the GW and Bethe–Salpeter Green’s Function Formalisms. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_5

Download citation

Publish with us

Policies and ethics