Skip to main content

Dye-Sensitized Solar Cells: A Brief Historical Perspective and Uses in Multijunction Devices

  • Chapter
  • First Online:
Development of Solar Cells

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 32))

Abstract

A brief history of the development of solar-to-electric devices is discussed for the classically researched solar cell technologies including Si, CIGS, CdTe, GaAs, OPV, DSC, and PSC devices. Relative strengths and weaknesses of these technologies are presented along with the importance of multijunction system research toward higher efficiency solar-to-electric systems. The combining of DSCs with each technology is discussed along with potential directions for designing next generation multijunction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saygili Y, Stojanovic M, Flores-Díaz N et al (2019) Metal coordination complexes as redox mediators in regenerative dye-sensitized solar cells. Inorganics 7:30

    Article  CAS  Google Scholar 

  2. Cole JM, Pepe G, Al Bahri OK et al (2019) Cosensitization in dye-sensitized solar cells. Chem Rev 119:7279–7327

    Article  CAS  Google Scholar 

  3. Ji J-M, Zhou H, Kim HK (2018) Rational design criteria for d-π-a structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells. J Mater Chem a 6:14518–14545

    Article  CAS  Google Scholar 

  4. Polman A, Knight M, Garnett EC et al (2016) Photovoltaic materials: Present efficiencies and future challenges. Science 352:307

    Article  CAS  Google Scholar 

  5. Wu Y, Zhu WH, Zakeeruddin SM et al (2015) Insight into D-A-π-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl Mater Interfaces 7:9307–9318

    Article  CAS  Google Scholar 

  6. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  7. Mishra A, Fischer MK, Bauerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  8. Freitag M, Teuscher J, Saygili Y et al (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photon 11:372–378

    Article  CAS  Google Scholar 

  9. Fakharuddin A, Jose R, Brown TM et al (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7:3952–3981

    Article  CAS  Google Scholar 

  10. Bella F, Gerbaldi C, Barolo C et al (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44:3431–3473

    Article  CAS  Google Scholar 

  11. Wang P, Yang L, Wu H et al (2018) Stable and efficient organic dye-sensitized solar cell based on ionic liquid electrolyte. Joule 2:2145–2153

    Article  CAS  Google Scholar 

  12. Peddapuram A, Cheema H, Adams RE et al (2017) A stable panchromatic green dual acceptor, dual donor organic dye for dye-sensitized solar cells. J Phys Chem C 121:8770–8780

    Article  CAS  Google Scholar 

  13. Ren Y, Sun D, Cao Y et al (2018) A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J Am Chem Soc

    Google Scholar 

  14. Zhang X, Xu Y, Giordano F et al (2016) Molecular engineering of potent sensitizers for very efficient light harvesting in thin film solid state dye sensitized solar cells. J Am Chem Soc 138:10742–10745

    Article  CAS  Google Scholar 

  15. Safdari M, Lohse PW, Häggman L et al (2016) Investigation of cobalt redox mediators and effects of TiO2 film topology in dye-sensitized solar cells. RSC Adv 6:56580–56588

    Article  CAS  Google Scholar 

  16. Eom YK, Kang SH, Choi IT et al (2017) Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J Mater Chem A 5:2297–2308

    Article  CAS  Google Scholar 

  17. Brogdon P, Cheema H, Delcamp JH (2018) Near-infrared-absorbing metal-free organic, porphyrin, and phthalocyanine sensitizers for panchromatic dye-sensitized solar cells. Chemsuschem 11:86–103

    Article  CAS  Google Scholar 

  18. Kang SH, Jeong MJ, Eom YK et al (2016) Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications. Adv Energy Mater 7:1602117

    Article  Google Scholar 

  19. Cheema H, Rodrigues RR, Delcamp JH (2017) Sequential series multijunction dye-sensitized solar cells (SSM-DSCs): 4.7 volts from a single illuminated area. Energy Environ Sci 10:1764–1769

    Article  CAS  Google Scholar 

  20. Rodrigues RR, Cheema H, Delcamp JH (2018) A high voltage molecular engineered organic sensitizer-iron redox shuttle pair: 1.4 V DSC and 3.3 V SSM-DSC devices. Angew Chem Int Ed 57:5472–5476

    Article  CAS  Google Scholar 

  21. Cheema H, Delcamp JH (2019) The role of antireflective coating cytop, immersion oil, and sensitizer selection in fabricating a 2.3 v, 10% power conversion efficiency SSM-DSC device. Adv Energy Mater 9:1900162

    Google Scholar 

  22. Bruder I, Karlsson M, Eickemeyer F et al (2009) Efficient organic tandem cell combining a solid state dye-sensitized and a vacuum deposited bulk heterojunction solar cell. Solar Energy Mater Solar Cells 93:1896–1899

    Article  CAS  Google Scholar 

  23. Vildanova MF, Nikolskaia AB, Kozlov SS et al (2018) Novel types of dye-sensitized and perovskite-based tandem solar cells with a common counter electrode. Tech Phys Lett 44:126–129

    Article  CAS  Google Scholar 

  24. Kinoshita T, Nonomura K, Joong Jeon N et al (2015) Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat Commun 6:8834

    Article  CAS  Google Scholar 

  25. Chae SY, Park SJ, Joo OS et al (2016) Highly stable tandem solar cell monolithically integrating dye-sensitized and cigs solar cells. Sci Rep 6:30868

    Article  CAS  Google Scholar 

  26. Jeong W-S, Lee J-W, Jung S et al (2011) Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and cigs solar cells. Solar Energy Mater Solar Cells 95:3419–3423

    Article  CAS  Google Scholar 

  27. Kwon J, Im MJ, Kim CU et al (2016) Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ Sci 9:3657–3665

    Article  CAS  Google Scholar 

  28. Liang Y, Wang Y, Mu C et al (2017) Achieving high open-circuit voltages up to 1.57 v in hole-transport-material-free MAPbBr3 solar cells with carbon electrodes. Adv Energy Mater 8:1701159

    Google Scholar 

  29. Kakiage K, Osada H, Aoyama Y et al (2016) Achievement of over 1.4 v photovoltage in a dye-sensitized solar cell by the application of a silyl-anchor coumarin dye. Sci Rep 6:35888

    Google Scholar 

  30. Kim BM, Han HG, Kim JS et al (2017) Control and monitoring of dye distribution in mesoporous TiO2 film for improving photovoltaic performance. ACS Appl Mater Interfaces 9:2572–2580

    Article  CAS  Google Scholar 

  31. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 2655–2666

    Google Scholar 

  32. Garcia-Rodriguez R, Jiang R, Canto-Aguilar EJ et al (2017) Improving the mass transport of copper-complex redox mediators in dye-sensitized solar cells by reducing the inter-electrode distance. Phys Chem Chem Phys 19:32132–32142

    Article  CAS  Google Scholar 

  33. Tsao HN, Burschka J, Yi C et al (2011) Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy Environ Sci 4:4921

    Article  CAS  Google Scholar 

  34. Fan K, Li F, Wang L et al (2014) Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Phys Chem Chem Phys 16:25234–25240

    Article  CAS  Google Scholar 

  35. Hao S, Wu J, Sun Z (2012) A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO2 film. Thin Solid Films 520:2102–2105

    Article  CAS  Google Scholar 

  36. Ito S, Dharmadasa IM, Tolan GJ et al (2011) High-voltage (1.8v) tandem solar cell system using a GaAs/ALXGa(1–x)as graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. Sol Energy 85:1220–1225

    Article  CAS  Google Scholar 

  37. Ogunsolu OO, Murphy IA, Wang JC et al (2016) Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl Mater Interfaces 8:28633–28640

    Article  CAS  Google Scholar 

  38. Luo J, Wan Z, Jia C et al (2016) A co-sensitized approach to efficiently fill the absorption valley, avoid dye aggregation and reduce the charge recombination. Electrochim Acta 215:506–514

    Article  CAS  Google Scholar 

  39. Hu Y, Abate A, Cao Y et al (2016) High absorption coefficient cyclopentadithiophene donor-free dyes for liquid and solid-state dye-sensitized solar cells. J Phys Chem C 120:15027–15034

    Article  CAS  Google Scholar 

  40. Arora N, Orlandi S, Dar MI et al (2016) High open-circuit voltage: Fabrication of formamidinium lead bromide perovskite solar cells using fluorene–dithiophene derivatives as hole-transporting materials. ACS Energy Lett 1:107–112

    Article  CAS  Google Scholar 

  41. Kakiage K, Tokutome T, Iwamoto S et al (2013) Fabrication of a dye-sensitized solar cell containing a mg-doped TiO2 electrode and a Br3(-)/Br-redox mediator with a high open-circuit photovoltage of 1.21 v. Chem Commun 49:179–180

    Article  CAS  Google Scholar 

  42. Yum JH, Baranoff E, Kessler F et al (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631

    Article  Google Scholar 

  43. Chou H-H, Hsu C-Y, Hsu Y-C et al (2012) Dipolar organic pyridyl dyes for dye-sensitized solar cell applications. Tetrahedron 68:767–773

    Article  CAS  Google Scholar 

  44. Ahmad S, Bessho T, Kessler F et al (2012) A new generation of platinum and iodine free efficient dye-sensitized solar cells. Phys Chem Chem Phys 14:10631–10639

    Article  CAS  Google Scholar 

  45. Teng C, Yang X, Li S et al (2010) Tuning the homo energy levels of organic dyes for dye-sensitized solar cells based on Br-/Br3-electrolytes. Chem Eur J 16:13127–13138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

That authors acknowledge support from the Department of Energy Basic Energy Sciences program for grant DE-SC0019131 which supported background literature research with relation to the high-voltage systems reported herein. The authors also acknowledge support from the National Science Foundation for grant 1954922 which supported background literature research with relation to the narrow energy gap systems reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared H. Delcamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniel, A., Delcamp, J.H. (2021). Dye-Sensitized Solar Cells: A Brief Historical Perspective and Uses in Multijunction Devices. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_4

Download citation

Publish with us

Policies and ethics