Skip to main content

Recent Progress in Perovskite Solar Cell: Fabrication, Efficiency, and Stability

  • Chapter
  • First Online:
Development of Solar Cells

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 32))

Abstract

The perovskite solar cells (PSC) are believed to have great potential in solar cell industries, since the dramatic power conversion efficiency (PCE) improvement in such short time (i.e., from 3.8% in 2009 to 25% up to date). Organolead halide perovskite materials are commonly used in the PSC, such as CH3NH3PbI3. In order to improve the PCE, many methods have been taken, such as doping ions in perovskite materials, charge transporting layer modification, microstructure modification, and utilizing advanced fabrication techniques. Besides PCE, stability is also an important issue in PSC, because the perovskite can be easily decomposed with moisture, UV light, and overheating, which is a big challenge for the commercialization of PSCs. This chapter summarizes the latest progress of PSCs and provides some useful insights for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oxlade C (2012) Solar power. Capstone Global Library Ltd, Lodon, England

    Google Scholar 

  2. Ono LK, Leyden MR, Wang S, Qi Y (2016) Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A 4:6693–6713

    Article  CAS  Google Scholar 

  3. Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72

    Article  CAS  Google Scholar 

  4. Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11:10–25

    Article  CAS  PubMed  Google Scholar 

  5. Weber D (1978) CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur. Z Naturforsch B 33:1443–1445

    Article  Google Scholar 

  6. Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14:477–485

    Article  CAS  Google Scholar 

  7. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514

    Article  CAS  Google Scholar 

  8. Chen Q, Marco ND, Yang Y, Song TB, Chen CC, Zhao H et al (2015) Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10:355–396

    Article  CAS  Google Scholar 

  9. Sun Q, Yin WJ (2017) Thermodynamic stability trend of cubic perovskites. J Am Chem Soc 139:14905–14908

    Article  CAS  PubMed  Google Scholar 

  10. Song Z, Watthage SC, Philips AB, Heben MJ (2016) Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy 6:1–23

    Article  Google Scholar 

  11. Zuo C, Bolink HJ, Han H, Huang J, Cahen D, Ding L (2016) Advances in perovskite solar cells. Adv Sci 3:1–16

    Article  Google Scholar 

  12. Ren X, Jung HS (2018) Recent progress in flexible perovskite solar cell development. J Korean Ceram Soc 55:325–336

    Article  CAS  Google Scholar 

  13. Zhou C, Lin S (2020) Carbon-electrode based perovskite solar cells: effect of bulk engineering and interface engineering on the power conversion properties. Sol RRL 4:1–19

    Article  CAS  Google Scholar 

  14. Shi B, Duan L, Zhao Y, Luo J, Zhang X (2020) Semitransparent perovskite solar cells: from materials and devices to applications. Adv Mater 32:1–12

    Article  Google Scholar 

  15. Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW et al (2016) Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354:861–865

    Article  CAS  PubMed  Google Scholar 

  16. Liang J, Zhu G, Lu Z, Zhao P, Wang C, Ma Y et al (2018) Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. J Mater Chem A 6:2047–2052

    Article  CAS  Google Scholar 

  17. Wheeler LM, Moore DT, Ihly R, Stanton NJ, Miller EM, Tenent RC et al (2017) Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat Commun 8:1–9

    Article  Google Scholar 

  18. Dang Y, Ju D, Wang L, Tao X (2016) Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm 18:4476–4484

    Article  CAS  Google Scholar 

  19. Berhe TA, Su WN, Chen CH, Pan CJ, Cheng JH, Chen HM et al (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356

    Article  CAS  Google Scholar 

  20. Snaith HJ (2018) Present status and future prospects of perovskite photovoltaics. Nat Mater 17:372–376

    Article  CAS  PubMed  Google Scholar 

  21. Babayigit A, Ethirajan A, Muller M, Conings B (2016) Toxicity of organometal halide perovskite solar cells. Nat Mater 15:247–251

    Article  CAS  PubMed  Google Scholar 

  22. Habisreutinger SN, Noel NK, Snaith HJ (2018) Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett 3:2472–2476

    Article  CAS  Google Scholar 

  23. Jiang Y, Luo B, Jiang F, Jiang F, Fuentes-Hernandez C, Liu T et al (2016) Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating. Nano Lett 16:7829–7835

    Article  CAS  PubMed  Google Scholar 

  24. Saidaminov MI, Abdelhady AL, Maculan G, Bakr OM (2015) Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun 51:17658–17661

    Article  CAS  Google Scholar 

  25. Jamal MS, Bashar MS, Hasan AKM, Almutairi ZA, Alharbi HF, Alharthi NH et al (2018) Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew Sust Energ Rev 98:469–488

    Article  CAS  Google Scholar 

  26. Im JH, Kim HS, Park NG (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step verus two-step deposition of CH3NH3PbI3. APL Mater 2:1–8

    Article  Google Scholar 

  27. Huang L, Li C, Sun X, Xu R, Du Y, Ni J et al (2017) Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org Electron 40:13–23

    Article  CAS  Google Scholar 

  28. Zhang T, Guo N, Li G, Qian X, Li L, Zhao Y (2016) A general non-CH3NH3X (X=I, Br) one-step deposition of CH3NH3PbX3 perovskite for high performance solar cells. J Mater Chem A 4:3245–3248

    Article  CAS  Google Scholar 

  29. Liang K, Mitzi DB, Prikas MT (1998) Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem Mater 10:403–411

    Article  CAS  Google Scholar 

  30. Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X et al (2017) Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl Mater Interfaces 9:7224–7231

    Article  CAS  PubMed  Google Scholar 

  31. Bi D, El-Zohry AM, Hagfeldt A, Boschloo G (2014) Improved morphology control using a modified two-step method for efficient perovskite solar cells. ACS Appl Mater Interfaces 6:18751–18757

    Article  CAS  PubMed  Google Scholar 

  32. Kim YY, Park EY, Yang TY, Noh JH, Shin TJ, Jeon NJ et al (2018) Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J Mater Chem A 6:12447–12454

    Article  CAS  Google Scholar 

  33. Zhou H, Chen Q, Yang Y (2015) Vapor-assisted solution process for perovskite materials and solar cells. MRS Bull 40:667–673

    Article  CAS  Google Scholar 

  34. Xiao L, Xu J, Luan J, Zhang B, Tan Z, Yao J (2017) Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells. Org Electron 50:33–42

    Article  CAS  Google Scholar 

  35. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136:622–625

    Article  CAS  PubMed  Google Scholar 

  36. Liu C, Fan J, Zhang X, Shen Y, Yang L, Mai Y (2015) Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process. ACS Appl Mater Interfaces 7:9066–9071

    Article  CAS  PubMed  Google Scholar 

  37. Kajal P, Ghosh K, Powar S (2018) Manufacturing techniques of perovskite solar cells. In: Applications of solar energy. Springer, pp 341–364

    Google Scholar 

  38. Luo P, Zhou S, Xia W, Cheng J, Xu C, Lu Y (2017) Chemical vapor deposition of perovskites for photovoltaic application. Adv Mater Interfaces 4:1–9

    Article  Google Scholar 

  39. Leyden MR, Ono LK, Raga SR, Kato Y, Wang S, Qi Y (2014) High performance perovskite solar cells by hybrid chemical vapor deposition. J Mater Chem A 2:18742–18745

    Article  CAS  Google Scholar 

  40. Leyden MR, Lee MV, Raga SR, Qi Y (2015) Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J Mater Chem A 3:16097–16103

    Article  CAS  Google Scholar 

  41. Ng A, Ren Z, Shen Q, Cheung SH, Gokkaya HC, So SK et al (2016) Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells. ACS Appl Mater Interfaces 8:32805–32814

    Article  CAS  PubMed  Google Scholar 

  42. Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves. J Mater Chem A 3:12443–12451

    Article  CAS  Google Scholar 

  43. Fan P, Gu D, Liang GX, Luo JT, Chen JL, Zheng ZH et al (2016) High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 6:1–9

    Google Scholar 

  44. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  CAS  PubMed  Google Scholar 

  45. Hwang B, Lee JS (2017) A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials. Adv Mater 29:1–7

    Google Scholar 

  46. Cao Q, Yang S, Gao Q, Lei L, Yu Y, Shao J (2016) Fast and controllable crystallization of perovskite films by microwave irradiation process. ACS Appl Mater Interfaces 8:7854–7861

    Article  CAS  PubMed  Google Scholar 

  47. Wolverton M (2018) Perovskite solar cells reveal excitonic optical transitions. AIP Scilight, pp 080003

    Google Scholar 

  48. Spooner E (2019) Organic photovoltaics vs 3rd-generation solar cell technologies. Ossila Ltd, Sheffield, UK

    Google Scholar 

  49. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M et al (2019) Solar cell efficiency tables (version 53). Prog Photovolt 27:3–12

    Article  Google Scholar 

  50. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  PubMed  Google Scholar 

  51. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Article  CAS  PubMed  Google Scholar 

  52. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:1–7

    Article  Google Scholar 

  53. Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2:822–830

    Article  CAS  Google Scholar 

  54. Ansari MIH, Qurashi A, Nazeeruddin MK (2018) Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J Photochem Photobiol C 35:1–24

    Article  CAS  Google Scholar 

  55. Jin J, Li H, Chen C, Zhang B, Xu L, Dong B et al (2017) Enhanced performance of perovskite solar cells with zinc chloride additives. ACS Appl Mater Interfaces 9:42875–42882

    Article  CAS  PubMed  Google Scholar 

  56. Boopathi KM, Mohan R, Huang TY, Budiawan W, Lin MY, Lee CH et al (2016) Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J Mater Chem A 4:1591–1597

    Article  CAS  Google Scholar 

  57. Seo JY, Matsui T, Luo J, Correa-Baena JP, Giordano F, Saliba M et al (2016) Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv Energy Mater 6:1–6

    Google Scholar 

  58. Li M, Xia D, Jiang A, Du X, Fan X, Qiu L et al (2019) Enhanced crystallization and optimized morphology of perovskites through doping an indium-based metal–organic assembly: achieving significant solar cell efficiency enhancements. Energy Technol 7:1–9

    Article  Google Scholar 

  59. Aeineh N, Barea EM, Behjat A, Sharifi N, Mora-Sero I (2017) Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl Mater Interfaces 9:13181–13187

    Article  CAS  PubMed  Google Scholar 

  60. Cao J, Yin J, Yuan S, Zhao Y, Li J, Zheng N (2015) Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7:9443–9447

    Article  CAS  PubMed  Google Scholar 

  61. Jung K, Lee J, Kim J, Chae WS, Lee MJ (2016) Solution-processed flexible planar perovskite solar cells: a strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3 PbI3 morphologies. J Power Sour 324:142–149

    Article  CAS  Google Scholar 

  62. Shahiduzzaman M, Visal S, Kuniyoshi M, Kaneko T, Umezu S, Katsumata T et al (2019) Low-temperature-processed brookite-based TiO2 heterophase junction enhances performance of planar perovskite solar cells. Nano Lett 19:598–604

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Zhao Y, Zhou W, Li Q, Fu R, Yu D et al (2018) In situ cesium modification at interface enhances the stability of perovskite solar cells. ACS Appl Mater Interfaces 10:33205–33213

    Article  CAS  PubMed  Google Scholar 

  64. Hu L, Li M, Yang K, Xiong Z, Yang B, Wang M et al (2018) PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. J Mater Chem A 6:16583–16589

    Article  CAS  Google Scholar 

  65. Seo JY, Uchida R, Kim HS, Saygili Y, Luo J, Moore C et al (2018) Boosting the efficiency of perovskite solar cells with CsBr-modified mesoporous TiO2 beads as electron-selective contact. Adv Funct Mater 28:1–7

    Article  Google Scholar 

  66. Chen C, Liu D, Zhang B, Bi W, Li H, Jin J et al (2018) Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells. Adv Energy Mater 8:1703659–1703659

    Article  Google Scholar 

  67. Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X et al (2019) CsPbBr 3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 59:517–526

    Article  CAS  Google Scholar 

  68. Tong J, Song Z, Kim DH, Chen X, Chen C, Palmstrom AF et al (2019) Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364:475–479

    Article  CAS  PubMed  Google Scholar 

  69. Gao Y, Wu Y, Liu Y, Chen C, Shen X, Bai X et al (2019) Improved interface charge extraction by double electron transport layers for high-efficient planar perovskite solar cells. Sol RRL 3:1–11

    Article  CAS  Google Scholar 

  70. Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H et al (2015) Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed Engl 54:9705–9709

    Article  CAS  PubMed  Google Scholar 

  71. Lee DK, Jeong DN, Ahn TK, Park NG (2019) Precursor engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett 4:2393–2401

    Article  CAS  Google Scholar 

  72. Li X, Bi D, Yi C, Decoppet JD, Luo J, Zakeeruddin SM et al (2016) A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62

    Article  CAS  PubMed  Google Scholar 

  73. Chou LH, Wang XF, Osaka I, Wu CG (2018) Scalable ultrasonic spray-processing technique for manufacturing large-area CH3NH3PbI3 perovskite solar cells. ACS Appl Mater Interfaces 10:38042–38050

    Article  CAS  PubMed  Google Scholar 

  74. Park M, Cho W, Lee G, Hong SC, Kim M, Yoon J et al (2019) Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3. Small 15:1–7

    Article  CAS  Google Scholar 

  75. Bag S, Deneault JR, Durstock MF (2017) Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites-a means to achieve high quality, defect-free films for efficient solar cells. Adv Energy Mater 7:1–11

    Article  CAS  Google Scholar 

  76. Tang S, Deng Y, Zheng X, Bai Y, Fang Y, Dong Q et al (2017) Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater 7:1–7

    Article  Google Scholar 

  77. Hwang K, Jung YS, Heo YJ, Scholes FH, Watkins SE, Subbiah J et al (2015) Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater 27:1241–1247

    Article  CAS  PubMed  Google Scholar 

  78. Frost JM, Butler KT, Brivio F, Hendon CH, Mv Schilfgaarde, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980

    Article  CAS  Google Scholar 

  80. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275

    Article  CAS  Google Scholar 

  81. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI (2014) A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed Engl 53:11232–11235

    Article  CAS  PubMed  Google Scholar 

  82. Xu Y, Xu S, Shao H, Jiang H, Cui Y, Wang C (2018) Dendrimer ligands-capped CH3NH3PbBr 3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water. Nanotechnology 29:1–7

    Article  CAS  Google Scholar 

  83. Cai Y, Wang S, Sun M, Li X, Xiao Y (2018) Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Org Electron 53:249–255

    Article  CAS  Google Scholar 

  84. Chen C, Li H, Jin J, Cheng Y, Liu D, Song H et al (2017) Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer. Nano Energy 32:165–173

    Article  CAS  Google Scholar 

  85. Hangoma PM, Ma Y, Shin I, Liu Y, Park WI, Jung YK et al (2018) Improved moisture stability of perovskite solar cells with a surface-treated PCBM layer. Sol RRL 3:1–10

    Google Scholar 

  86. Im K, Heo JH, Im SH, Kim J (2017) Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transporting-material with high moisture stability for CH3NH3PbI3 perovskite solar cells. Chem Eng J 330:698–705

    Article  CAS  Google Scholar 

  87. Ito S, Tanaka S, Manabe K, Nishino H (2014) Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C 118:16995–17000

    Article  CAS  Google Scholar 

  88. Ouafi M, Jaber B, Atourki L, Bekkari R, Laanab L (2018) Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J Alloys Compd 746:391–398

    Article  CAS  Google Scholar 

  89. Sun Y, Fang X, Ma Z, Xu L, Lu Y, Yu Q et al (2017) Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. J Mater Chem C 5:8682–8687

    Article  CAS  Google Scholar 

  90. Cao J, Lv X, Zhang P, Chuong TT, Wu B, Feng X et al (2018) Plant sunscreen and Co(II)/(III) porphyrins for UV-resistant and thermally stable perovskite solar cells: from natural to artificial. Adv Mater 30:1–9

    Article  Google Scholar 

  91. Jin J, Chen C, Li H, Cheng Y (2017) Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots. ACS Appl Mater Interfaces 9:14518–14524

    Article  CAS  PubMed  Google Scholar 

  92. Jin J, Li H, Chen C, Zhang B, Bi W, Song Z et al (2018) Improving efficiency and light stability of perovskite solar cells by incorporating YVO4:Eu3+, Bi3+ nanophosphor into the mesoporous TiO2 layer. ACS Appl Energy Mater 1:2096–2102

    Article  CAS  Google Scholar 

  93. Chen C, Li H, Jin J, Chen X, Cheng Y, Zheng Y et al (2017) Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells. Adv Energy Mater 7:1–8

    Article  Google Scholar 

  94. Chen C, Wu Y, Liu L, Gao Y, Chen X, Bi W et al (2019) Interfacial engineering and photon downshifting of CsPbBr 3 nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells. Adv Sci 6:1–9

    Article  Google Scholar 

  95. Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin MK, Gratzel M (2014) Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater 24:3250–3258

    Article  CAS  Google Scholar 

  96. Philippe B, Park BW, Lindblad R, Oscarsson J, Ahmadi S, Johansson EMJ (2015) Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem Mater 27:1720–1731

    Article  CAS  Google Scholar 

  97. Shao F, Qin P, Wang D, Zhang G, Wu B, He J et al (2019) Enhanced photovoltaic performance and thermal stability of CH3NH3PbI3 perovskite through lattice symmetrization. ACS Appl Mater Interfaces 11:740–746

    Article  CAS  PubMed  Google Scholar 

  98. Zou J, Liu W, Deng W, Lei G, Zeng S, Xiong J et al (2018) An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells. Electrochim Acta 291:297–303

    Article  CAS  Google Scholar 

  99. Zhang J, Mao W, Duan J, Huang S, Zhang Z, Ou-Yang W et al (2019) Enhanced efficiency and thermal stability of perovskite solar cells using poly(9-vinylcarbazole) modified perovskite/PCBM interface. Electrochim Acta 318:384–391

    Article  CAS  Google Scholar 

  100. Park C, Ko H, Sin DH, Song KC, Cho K (2017) Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv Funct Mater 27:1–8

    Article  Google Scholar 

  101. Baranwal AK, Kanaya S, Peiris TAN, Mizuta G, Nishina T, Kanda H et al (2016) 100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. Chemsuschem 9:2604–2608

    Article  CAS  PubMed  Google Scholar 

  102. Singh P, Rana PJS, Dhingra P, Kar P (2016) Towards toxicity removal in lead based perovskite solar cells by compositional gradient using manganese chloride. J Mater Chem C 4:3101–3105

    Article  CAS  Google Scholar 

  103. Johansson MB, Zhu H, Johansson EMJ (2016) Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J Phys Chem Lett 7:3467–3471

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Zhao, Y., Dai, Q. (2021). Recent Progress in Perovskite Solar Cell: Fabrication, Efficiency, and Stability. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_1

Download citation

Publish with us

Policies and ethics