Skip to main content

Using Machine Learning for Heart Disease Prediction

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 199)

Abstract

In this paper we carried out research on heart disease from data analytics point of view. Prediction of heart disease is a very recent field as the data is becoming available. Other researchers have approached it with different techniques and methods. We used data analytics to detect and predict disease’s patients. Starting with a pre-processing phase, where we selected the most relevant features by the correlation matrix, then we applied three data analytics techniques (neural networks, SVM and KNN) on data sets of different sizes, in order to study the accuracy and stability of each of them. Found neural networks are easier to configure and obtain much good results (accuracy of 93%).

Keywords

  • Machine Learning
  • Heart disease
  • Prediction
  • Detection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-69418-0_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-69418-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Babu, S., Vivek, E., Famina, K., Fida, K., Aswathi, P., Shanid, M., Hena, M.: Heart disease diagnosis using data mining technique. In: 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), vol. 1, pp. 750–753. IEEE (2017)

    Google Scholar 

  2. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    CrossRef  Google Scholar 

  3. Dangare, C.S., Apte, S.S.: Improved study of heart disease prediction system using data mining classification techniques. Int. J. Comput. Appl. 47(10), 44–48 (2012)

    Google Scholar 

  4. Fang, X., Hodge, B.M., Du, E., Zhang, N., Li, F.: Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: a sparse correlation matrix approach. Appl. Energy 230, 531–539 (2018)

    CrossRef  Google Scholar 

  5. Gavhane, A., Kokkula, G., Pandya, I., Devadkar, K.: Prediction of heart disease using machine learning. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1275–1278. IEEE (2018)

    Google Scholar 

  6. Hasan, S., Mamun, M., Uddin, M., Hossain, M.: Comparative analysis of classification approaches for heart disease prediction. In: 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), pp. 1–4. IEEE (2018)

    Google Scholar 

  7. Jenzi, I., Priyanka, P., Alli, P.: A reliable classifier model using data mining approach for heart disease prediction. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 20–24 (2013)

    Google Scholar 

  8. Kalaiselvi, C.: Diagnosing of heart diseases using average k-nearest neighbor algorithm of data mining. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 3099–3103. IEEE (2016)

    Google Scholar 

  9. Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T., Murray, C.J.: Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524), 1747–1757 (2016)

    CrossRef  Google Scholar 

  10. Masethe, H.D., Masethe, M.A.: Prediction of heart disease using classification algorithms. In: Proceedings of the world Congress on Engineering and Computer Science, vol. 2, pp. 22–24 (2014)

    Google Scholar 

  11. World Health Organization: The world health report 2002: reducing risks, promoting healthy life. World Health Organization (2016)

    Google Scholar 

  12. World Health Organization of Canada, Public Health Agency of Canada, Canadian Pharmacists Association: Preventing chronic diseases: a vital investment. World Health Organization (2015)

    Google Scholar 

  13. Patel, S.B., Yadav, P.K., Shukla, D.: Predict the diagnosis of heart disease patients using classification mining techniques. IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 4(2), 61–64 (2013)

    Google Scholar 

  14. Peter, T.J., Somasundaram, K.: An empirical study on prediction of heart disease using classification data mining techniques. In: IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM 2012), pp. 514–518. IEEE (2012)

    Google Scholar 

  15. Priyanka, N., RaviKumar, P.: Usage of data mining techniques in predicting the heart diseases–Naïve Bayes & decision tree. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–7. IEEE (2017)

    Google Scholar 

  16. Radhimeenakshi, S.: Classification and prediction of heart disease risk using data mining techniques of support vector machine and artificial neural network. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 3107–3111. IEEE (2016)

    Google Scholar 

  17. Raju, C., Philipsy, E., Chacko, S., Suresh, L.P., Rajan, S.D.: A survey on predicting heart disease using data mining techniques. In: 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 253–255. IEEE (2018)

    Google Scholar 

  18. Shanmugasundaram, G., Selvam, V.M., Saravanan, R., Balaji, S.: An investigation of heart disease prediction techniques. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Venkatalakshmi, B., Shivsankar, M.: Heart disease diagnosis using predictive data mining. Int. J. Innov. Res. Sci. Eng. Technol. 3(3), 1873–1877 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhai Eddine Salhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Salhi, D.E., Tari, A., Kechadi, MT. (2021). Using Machine Learning for Heart Disease Prediction. In: Senouci, M.R., Boudaren, M.E.Y., Sebbak, F., Mataoui, M. (eds) Advances in Computing Systems and Applications. CSA 2020. Lecture Notes in Networks and Systems, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-69418-0_7

Download citation