Skip to main content

Abstract

In the supply chain management research field, the analysis of collaborative strategies and the joint management of inventory and transport of goods have increased the attention or academics and practitioners due to the everyday bigger amount of freight flows, the complexity of the logistics scenarios and the current changes and tendencies in the goods interchange process. However, the computational complexity and the problems that may arise in the integration processes of different participant actors become the majority of proposals difficult to implement. In this paper, we develop a multi-agent system for solving the joint inventory and routing assignment problem. The proposed multi-agent system facilitates the integration of the distribution processes and the inventory management in a supply network with one depot and n customers. The multi-agent model is based in the autonomy of the actors to manage their capacity and their demand, as well as in the integration of the transport and inventory process using a collaborative strategy. To solve the resulting vehicle routing problem, we design a collaborative behavior that uses as an evaluation tool a local search heuristic with a 2-opt operator. The model for the inventory and routing assignment is implemented on the Java-based software platform JADE. The collaboration-based process in the multi-agent system demonstrates the usefulness of the distributed computing to decrease the total cost in the logistics operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alkaabneh F, Diabat A, Gao HO (2020) Benders decomposition for the inventory vehicle routing problem with perishable products and environmental costs. Comput Oper Res 113: https://doi.org/10.1016/j.cor.2019.07.009

    Article  MathSciNet  MATH  Google Scholar 

  • Alves R, da Silva Lima R, Custódio de Sena D, Ferreira de Pinho A, Holguín-Veras J (2019) Agent-based simulation model for evaluating urban freight policy to E-commerce. Sustainability 11(15):4020. https://doi.org/10.3390/su11154020

    Article  Google Scholar 

  • Aminzadegan S, Tamannaei M, Rasti-Barzoki M (2019) Multi-agent supply chain scheduling problem by considering resource allocation and transportation. Comput Ind Eng 137(August): https://doi.org/10.1016/j.cie.2019.106003

    Article  Google Scholar 

  • Arango-Serna MD, Gómez-Marín CG, Serna-Urán CA, Zapata-Cortes JA (2018) Multi-agent model for urban goods distribution. Res Comput Sci 147(3):35–44. Retrieved from http://www.rcs.cic.ipn.mx/rcs/2018_147_3/Multi-agentModelforUrbanGoodsDistribution.html

  • Arango-Serna MD, Romano CA, Zapata Cortés JA (2016) Distribución colaborativa de mercancías utilizando el modelo IRP. DYNA 83(196):204–212. https://doi.org/10.15446/dyna.v83n196.52492

  • Arango-Serna MD, Serna-Urán C (2016) New contract net negotiation protocol based on fuzzy inference applied to the supply chain. Universidad, Ciencia y Tecnología 20(81):176–187

    Google Scholar 

  • Arango-Serna MD, Zapata-Cortés JA, Gutíerrez D (2015) Modeling the inventory routing problem (irp) with multiple depots with genetic algorithms. IEEE Latin Am Trans 13(12):3959–3965

    Article  Google Scholar 

  • Archetti C, Bertazzi L, Laporte G, Speranza MG (2007) A branch and-cut algorithm for a vendor-managed inventory-routing problem. Transp Sci 1(3):382–391

    Article  Google Scholar 

  • Archetti C, Bianchessi N, Irnich S, Speranza MG (2014) Formulations for an inventory routing problem. Int Trans Oper Res 21(3):353–374

    Article  MathSciNet  Google Scholar 

  • Avci MG, Selim H (2016) A multi-agent system model for supply chains with lateral preventive transshipments: application in a multi-national automotive supply chain. Comput Ind 82:28–39. https://doi.org/10.1016/j.compind.2016.05.005

    Article  Google Scholar 

  • Azuma RM, Coelho GP, Von Zuben FJ (2011) Evolutionary multi-objective optimization for the vendor-managed inventory routing problem. In: IEEE congress on evolutionary computation (CEC), pp 1457–1464

    Google Scholar 

  • Belykh DL, Botvin GA (2018) Multi-agent framework for supply chain dynamics modelling with information sharing and demand forecast. In: Alexandrov D, Boukhanovsky A, Chugunov A, Kabanov Y, Koltsova O (eds) Digital transformation and global society. DTGS 2018. Communications in computer and information science, vol 858. Springer, Cham, pp 366–374. https://doi.org/10.1007/978-3-030-02843-5_29

  • Bertazzi L, Esperanza MG (2013) Inventory routing problems with multiple customers. Eur J Transp Logistic 2:255–275

    Article  Google Scholar 

  • Böhnlein D, Schweiger K, Tuma A (2011) Multi-agent-based transport planning in the newspaper industry. Int J Prod Econ 131(1):146–157. https://doi.org/10.1016/j.ijpe.2010.04.006

    Article  Google Scholar 

  • Cevirici A, Moller-Madsen H (2007) Solving logistic problem with multi-agent system. The Maersk Mc-Kinney Moeller Institute—MIP—University of Southern Denmark—SDU

    Google Scholar 

  • Coelho LC, Laporte G (2013) The exact solution of several classes of inventory-routing problems. Comput Oper Res 40:558–565

    Article  MathSciNet  Google Scholar 

  • Daganzo C (2005) Logistics systems analysis, 4th edn. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  • Ghadimi P, Ghassemi F, Heavey C (2017) A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. Eur J Oper Res 269(1):286–301. https://doi.org/10.1016/j.ejor.2017.07.014

  • Cho DW, Lee YH, Lee TY et al (2014) An adaptive genetic algorithm for the time dependent inventory routing problem. J Intell Manuf 25:1025–1042. https://doi.org/10.1007/s10845-012-0727-5

    Article  Google Scholar 

  • Gómez-Marín CG, Arango-Serna MD, Serna-Urán CA (2018) Agent-based microsimulation conceptual model for urban freight distribution. Transp Res Procedia 33:155–162. https://doi.org/10.1016/j.trpro.2018.10.088

    Article  Google Scholar 

  • Gómez-Marín CG, Zapata-Cortés JA, Arango-Serna MD, Serna-Urán CA (2019) An urban supply chain distribution model. Res Comput Sci 148(4):9–18

    Article  Google Scholar 

  • Guemri O, Bekrar A, Beldjilali B, Trentesaux D (2016) GRASP-based heuristic algorithm for the multi-product multi-vehicle inventory routing problem. 4OR-A Quart J Oper Res 14(4):377–404

    Google Scholar 

  • Guerrero WJ, Prodhon C, Velasco N, Amaya CA (2013) Hybrid heuristic for the inventory location-routing problem with deterministic demand. Int J Prod Econ 146:359–370

    Article  Google Scholar 

  • Huber S, Geiger MJ (2015) Dealing with scarce optimization time in complex logistics optimization: a study in the biobjective swap-body inventory routing problem. In: Proceedings of 8th international conference on evolutionary multi-criterion optimization, EMO 2015, March 29–April 1

    Google Scholar 

  • Kang JH, Kim YD (2010) Coordination of inventory y transportation managements in a two-level supply chain. Int J Prod Econ 123:137–145

    Article  Google Scholar 

  • Kim SC, Shin KS (2019) Negotiation model for optimal replenishment planning considering defects under the VMI and JIT environment. Asian J Shipping Logistics 35(3):147–153

    Article  Google Scholar 

  • Kumari S, Singh A, Mishra N, Garza-Reyes JA (2015) A multi-agent architecture for outsourcing SMEs manufacturing supply chain. Robot Comput Integr Manuf 36:36–44. https://doi.org/10.1016/j.rcim.2014.12.009

    Article  Google Scholar 

  • Lee J-Y, Cho RK (2018) Optimal (z, Z)-type contracts for vendor-managed inventory. Int J Prod Econ 202:32–44. https://doi.org/10.1016/j.ijpe.2018.05.011

  • Lopes F, Coelho H (2010) Bilateral negotiation in a multi-agent supply chain system. Lect Notes Bus Inform Process (LNBIP) 61:195–206. https://doi.org/10.1007/978-3-642-15208-5_18

  • Nguyen VP, Prins C, Prodhon C (2012) Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking. Eur J Oper Res 216(1):113–126. https://doi.org/10.1016/j.ejor.2011.07.030

    Article  MathSciNet  MATH  Google Scholar 

  • Pal K, Karakostas B (2014) A multi agent-based service framework for supply chain management. Procedia Comput Sci 32:53–60. https://doi.org/10.1016/j.procs.2014.05.397

    Article  Google Scholar 

  • Phan DA, Vo TLH, Lai AN, Nguyen TLA (2019) Coordinating contracts for VMI systems under manufacturer-CSR and retailer-marketing efforts. Int J Prod Econ 211:98–118. https://doi.org/10.1016/j.ijpe.2019.01.022

  • Plinere DS, Borisov AN, Aleksejeva LY (2015) Interaction of software agents in the problem of coordinating orders. Autom Control Comput Sci 49(5):268–276. https://doi.org/10.3103/S0146411615050089

    Article  Google Scholar 

  • Sainathan A, Groenevelt H (2019) Vendor managed inventory contracts – coordinating the supply chain while looking from the vendor’s perspective. Eur J Oper Res 22(1):249–260

    Article  MathSciNet  Google Scholar 

  • Serna-Urán CA (2016) Modelo multi-agente para problemas de recogida y entrega de mercancías con ventanas de tiempo usando un algoritmo memético con relajaciones difusas. Universidad Nacional de Colombia

    Google Scholar 

  • Serna-Urán CA, Arango-Serna MD, Zapata-Cortés JA, Gómez-Marín CG (2018) An agent-based memetic algorithm for solving three-level freight distribution problems. In: Sánchez-Cervantes, JL, Alor-Hernández, G., Salas-Zárate MP, García-Alcaraz JL, Rodríguez-Mazahua L (eds) Exploring intelligent decision support systems. Springer, Cham, pp 111–131. https://doi.org/10.1007/978-3-319-74002-7_6

  • Shaabani H, Kamalabadi IN (2016) An efficient population-based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem. Comput Ind Eng 99:189–201. https://doi.org/10.1016/j.cie.2016.07.022

    Article  Google Scholar 

  • Sitek P, Nielsen IE, Wikarek J (2014) A hybrid multi-agent approach to the solving supply chain problems. Procedia Comput Sci 35(C):1557–1566. https://doi.org/10.1016/j.procs.2014.08.239

  • Soysal M, Bloemhof-Ruwaard JM, Haijema R, van der Vorst JGAJ (2018) Modeling a green inventory routing problem for perishable products with horizontal collaboration. Comput Oper Res 89:168–182. https://doi.org/10.1016/j.cor.2016.02.003

    Article  MathSciNet  MATH  Google Scholar 

  • Soysal M, Çimen M, Belbağ S, Toğrul E (2019) A review on sustainable inventory routing. Comput Ind Eng 132(April):395–411. https://doi.org/10.1016/j.cie.2019.04.026

    Article  Google Scholar 

  • Verma NK, Chatterjee AK (2017) A multiple-retailer replenishment model under VMI: accounting for the retailer heterogeneity. Comput Ind Eng 104:175–187. https://doi.org/10.1016/j.cie.2016.12.001

  • Vidović M, Popovi D, Ratković B (2014) Mixed integer and heuristics model for the inventory routing problem in fuel delivery. Int J Prod Econ 147:593–604

    Article  Google Scholar 

  • Wang G, Wong TN, Wang X (2013) An ontology based approach to organize multi-agent assisted supply chain negotiations. Comput Ind Eng 65(1):2–15. https://doi.org/10.1016/j.cie.2012.06.018

    Article  Google Scholar 

  • Wooldridge M (2002) An introduction to multiagent systems. UK, Willey. https://doi.org/10.1145/1753171.1753181

  • Zapata-Cortes JA (2016) Optimización de la distribución de mercancías utilizando un modelo genético multiobjetivo de inventario colaborativo de m proveedores con n clientes. Universidad Nacional de Colombia

    Google Scholar 

  • Zhao J, Zhao H (2018) Design of prototype system for multi-agent supply chain information sharing benefit distribution management. IseB (0123456789). https://doi.org/10.1007/s10257-018-0386-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrado Augusto Serna-Urán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serna-Urán, C.A., Gómez-Marín, C.G., Zapata-Cortes, J.A., Arango-Serna, M.D. (2021). A Multi-agent System for the Inventory and Routing Assignment. In: García Alcaraz, J.L., Sánchez-Ramírez, C., Gil López, A.J. (eds) Techniques, Tools and Methodologies Applied to Quality Assurance in Manufacturing . Springer, Cham. https://doi.org/10.1007/978-3-030-69314-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69314-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69313-8

  • Online ISBN: 978-3-030-69314-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics