Skip to main content

Design of a Closed-Loop Supercritical Carbon Dioxide Wind Tunnel: Numerical Modelling of Non-equilibrium Condensation in a Converging-Diverging Nozzle

  • Conference paper
  • First Online:
Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power (NICFD 2020)

Part of the book series: ERCOFTAC Series ((ERCO,volume 28))

Abstract

Closed-loop supercritical CO\({}_{2}\) (sCO\({}_{2}\)) cycles are one of most promising power conversion options for the foreseeable future. Experimental studies are necessary for a successful development and deployment of these technologies. This paper focuses on the design of a sCO\({}_{2}\) experimental loop with a supersonic nozzle test section. The expansion process has operating conditions similar to those found at the inlet of supercritical compressors with non-equilibrium condensation. Among the possible cycle configurations, the transcritical refrigeration cycle is preferred for its wide range of applications and the operability in the thermodynamic region of interest close to the critical point. The design of the converging-diverging nozzle is also discussed. The saturation curve is crossed in the diverging section of the nozzle, therefore a non-equilibrium condensation model is presented and validated for an accurate design of the test section. In addition, the validated model is employed to present first results from the designed nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allam, R., Scott, M., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, G.W., Sasaki, T., Itoh, M., Manning, J.: Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 114, 5948–5966 (2017). https://doi.org/10.1016/j.egypro.2017.03.1731

    Article  Google Scholar 

  • Ameli, A., Turunen-Saaresti, T., Backman, J.: Numerical investigation of the flow behavior inside a supercritical CO2 centrifugal compressor. ASME J. Eng. Gas Turbines Power 140(12), 122604 (2018). https://doi.org/10.1115/GT2016-57481

    Article  Google Scholar 

  • Angelino, G.: Carbon dioxide condensation cycles for power production. ASME J. Eng. Power 90(3), 287–295 (1968). https://doi.org/10.1115/1.3609190

    Article  Google Scholar 

  • Austin, B.T., Sumathy, K.: Transcritical carbon dioxide heat pump systems: a review. Renew. Sustain. Energy Rev. 15, 4013–4029 (2011). https://doi.org/10.1016/j.rser.2011.07.021

    Article  Google Scholar 

  • Bakhtar, F., Young, J.B., White, A.J., Simpson, D.A.: Classical nucleation theory and its application to condensing steam flow calculations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 219(12), 1315–1333 (2005). https://doi.org/10.1243/095440605X8379

    Article  Google Scholar 

  • Baltadjiev, N., Lettieri, C., Spakovszky, Z.: An investigation of real gas effects in supercritical CO2 centrifugal compressors. ASME J. Turbomach. 137(9), 091003 (2015). https://doi.org/10.1115/1.4029616

    Article  Google Scholar 

  • Bell, J., Mehta, R.: Contraction design for small low-speed wind tunnels. Technical report, NASA Contractor Report No. NASA–CR–177488 (1988)

    Google Scholar 

  • Dostal, V., Driscoll, M.J., Hejzlar, P.: High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nucl. Technol. 154(3), 265–282 (2006). https://doi.org/10.13182/NT154-265

    Article  Google Scholar 

  • Groll, E.A., Kim, J.H.: Review of recent advances toward transcritical CO2 cycle technology. HVAC&R Res. 13(3), 499–520 (2007). https://doi.org/10.1080/10789669.2007.10390968

    Article  Google Scholar 

  • Gyarmathy, G.: Zur Wachstumsgeschwindigkeit kleiner FlĂĽssigkeitstropfen in einer ĂĽbersättigten Atmosphäre. Zeitschrift FĂĽr Angewandte Mathematik Und Physik ZAMP 14(3), 280–293 (1963). https://doi.org/10.1007/BF01601066

    Article  MATH  Google Scholar 

  • Kantrowitz, A.: Nucleation in very rapid vapor expansion. J. Chem. Phys. 19(9), 1097–1100 (1950). https://doi.org/10.1063/1.1748482

    Article  Google Scholar 

  • Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2018). https://doi.org/10.18434/T4JS3C

  • Lettieri, C., Paxson, D., Spakovszky, Z., Bryanston-Cross, P.: Characterization of nonequilibrium condensation of supercritical carbon dioxide in a de laval nozzle. ASME J. Eng. Gas Turbines Power 140(4), 041701 (2018). https://doi.org/10.1115/1.4038082

    Article  Google Scholar 

  • Passmann, M., Reinker, F., Hasselmann, K., auf der Wiesche, S., Joos, F.: Development and design of a two-stage contraction zone and test section of an organic rankine cycle wind tunnel. In: ASME Turbo Expo, Seoul, South Korea, GT2016-56580, 13–17 June 2016 (2016). https://doi.org/10.1115/GT2016-56580

  • Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressure up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996). https://doi.org/10.1063/1.555991

    Article  Google Scholar 

  • Uusitalo, A., Ameli, A., Turunen-Saaresti, T.: Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 167, 60–79 (2018). https://doi.org/10.1016/j.energy.2018.10.181

    Article  Google Scholar 

  • Wright, S.A., Radel, R.F., Vernon, M.E., Rochau, G.E., Pickard, P.S.: Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia National Laboratories, Albuquerque, NM, Sandia Report No. 2010-0171 (2010). https://doi.org/10.2172/984129

  • Young, J.B.: The spontaneous condensation of steam in supersonic nozzles. PhysicoChemical Hydrodyn. (PCH) 3, 57–82 (1982). ISSN 0191-9059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Petruccelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petruccelli, G., Uusitalo, A., Grönman, A., Turunen-Saaresti, T., Zocca, M. (2021). Design of a Closed-Loop Supercritical Carbon Dioxide Wind Tunnel: Numerical Modelling of Non-equilibrium Condensation in a Converging-Diverging Nozzle. In: Pini, M., De Servi, C., Spinelli, A., di Mare, F., Guardone, A. (eds) Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. NICFD 2020. ERCOFTAC Series, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-69306-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69306-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69305-3

  • Online ISBN: 978-3-030-69306-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics