Skip to main content

The Operator Theory: A Yardstick for Complexity from Quarks to Memons—Relationships with Evolution and Thermodynamics

  • 84 Accesses

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Thermodynamic theory predicts that the universe develops towards maximum energy dispersal. Meanwhile, complex systems continue to form. The search for an explanation of these seemingly opposing trends has inspired many scientists. The theory of nonequilibrium thermodynamics brought much progress, allowing subsystems to become more complex at the costs of external energy gradients. But energy gradients may not tell the whole story, because, while they explain the existence of cells, gradients alone cannot explain the existence of complex organisms such as plants, tigers, or humans. Contributing to our understanding of the relationships between complexity and thermodynamics, this study focuses on a hierarchical subset of all complex systems. The systems in this subset have formed, in a step-by-step way, through a series of “dual-closure” processes. Every system produced through dual closure is called an “operator,” and their stringent complexity hierarchy is called the “operator hierarchy.” It is demonstrated that the operators can be grouped into three major classes with fundamentally different thermodynamics: (1) abiotic operators resulting from condensation reactions, (2) organisms resulting from contained autocatalysis and competition, and (3) neural network organisms driven by autocatalysis, learning, and competition. To these three groups a fourth group of rapidly evolving systems that are not operators can be added: “artifacts” made by organisms, notably humans. While normally being viewed as the result of self-organization, the design of artifacts may in fact be the product of “allo-organization.”

Keywords

  • Operatorhierarchy
  • O-theory
  • Thermodynamics
  • Big evolution
  • System science
  • Hierarchy theory

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-69288-9_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-69288-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Alvarez de Lorenzana JM (1993) The constructive universe and the evolutionary systems framework. In: Salthe SN (ed) Development and evolution. Complexity and change in biology. MIT Press, Cambridge, pp 291–308

    Google Scholar 

  • Annila A (2010a) The 2nd law of thermodynamics delineates dispersal of energy. Int Rev Phys 4:29–34

    Google Scholar 

  • Annila A (2010b) All in action. Entropy 12:2333–2358

    ADS  MathSciNet  MATH  CrossRef  Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus Press, New York, NY

    MATH  CrossRef  Google Scholar 

  • Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71(24):4083–4086

    ADS  CrossRef  Google Scholar 

  • Bardele CF (1997) On the symbiotic origin of protists, their diversity, and their pivotal role in teaching systematic biology. Ital J Zool 64:107–113

    CrossRef  Google Scholar 

  • Bejan A (1997) Advanced engineering thermodynamics. Wiley, New York

    Google Scholar 

  • Bejan A (2016) The physics of life. The evolution of everything. St. Martin’s Press, New York

    Google Scholar 

  • Bejan A, Lorente S (2010) The constructal law of design and evolution in nature. Philos Trans R Soc B 365:1335–1347

    CrossRef  Google Scholar 

  • Bernard C (1865) Introduction à l'étude de la médecine expérimentale, Paris

    Google Scholar 

  • Blackmore S (1999) The meme machine. Oxford University Press, Oxford

    Google Scholar 

  • Branscomb E, Russell MJ (2013) Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim Biophys Acta Bioenerget 1827(2):62–78

    CrossRef  Google Scholar 

  • Chaisson EJ (2001) Cosmic evolution: the rise of complexity in nature. Harvard University Press, Cambridge

    CrossRef  Google Scholar 

  • Chaisson EJ (2011) Energy rate density. II. Probing further a new complexity metric. Complexity 17:44–63

    ADS  CrossRef  Google Scholar 

  • Chandler JLR, de Vijver G (2000) Closure: emergent organizations and their dynamics. Ann N Y Acad Sci 901

    Google Scholar 

  • Checkland P, Scholes J (1990) Soft systems methodology in action. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Claessens MMAE, Leermakers FAM, Hoekstra FA, Cohen Stuart MA (2007) Entropic stabilization and equilibrium size of lipid vessels. Langmuir 23(11):6315–6320. ISSN 0743-7463

    CrossRef  Google Scholar 

  • Corominas-Murtra B (2019) Thermodynamics of duplication thresholds in synthetic protocell systems. Life 9:9. https://doi.org/10.3390/life9010009

    CrossRef  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or he preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool J Linnean Soc 3:46–50

    Google Scholar 

  • Dawkins R (1976) The selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  • Ebeling W, Feistel R (1992) Theory of self-organization and evolution: the role of entropy, value and information. J Non-equilibrium Thermodyn 17:303–332

    MATH  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of self-organizalion. Springer, New York

    CrossRef  Google Scholar 

  • Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, vierte Folge Band 49:769–822

    ADS  MATH  CrossRef  Google Scholar 

  • Fanelli D, McKane AJ (2008) Thermodynamics of vesicle growth and instability. Phys Rev E 78:051406

    ADS  CrossRef  Google Scholar 

  • Feibleman JK (1954) Theory of integrative levels. Br J Philosophy Sci 5:59–66

    CrossRef  Google Scholar 

  • Feigenbaum MJ (1978) Quantitative universality for a class of non-linear transformations. J Stat Phys 19:25–52

    ADS  MATH  CrossRef  Google Scholar 

  • Georgiev GY, Chatterjee A (2016) The road to a measurable quantitative understanding of self-organization and evolution. In: op Akkerhuis GAJM J (ed) Evolution and transitions in complexity. The science of hierarchical organization of nature. Springer, Cham

    Google Scholar 

  • Georgiev G, Georgiev I (2002) The least action and the metric of an organized system. Open Syst Inf Dyn 9:371–380

    CrossRef  Google Scholar 

  • Georgiev GY, Henry K, Bates T, Gombos E, Casey A, Daly M, Vinod A, Lee H (2015) Mechanism of organization increase in complex systems. Complexity 21:18–28

    CrossRef  Google Scholar 

  • Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Connecticut Acad Arts Sci 2:382–404

    MATH  Google Scholar 

  • Gladyshev GP (1978) On the thermodynamics of biological evolution. J Theor Biol 75:425–441

    ADS  MathSciNet  CrossRef  Google Scholar 

  • Gladyshev GP (2017) Hierarchical thermodynamics: foundation of extended Darwinism. Imperial J Interdiscipl Res (IJIR) 3:1576–1588

    Google Scholar 

  • Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Hernández-Zapata E, Martínez-Balbuena L, Santamaria Holek I (2009) Thermodynamics and dynamics of the formation of spherical lipid vesicles. J Biol Phys 35(3):297–308

    CrossRef  Google Scholar 

  • Herron MD, Nedelcu AM (2015) Volvocine algae: from simple to complex multicellularity. In: Ruiz-Trillo I, Nedelcu AM (eds) Evolutionary transitions to multicellular life. Advances in marine genomics 2. Springer Science & Business Media, Dordrecht, pp 129–152. https://doi.org/10.1007/978-94-017-9642-2_7

    CrossRef  Google Scholar 

  • Herron MD et al. (2019) Nature. Scientific Reports 9(2328)

    Google Scholar 

  • Heylighen F (1990) Relational closure: a mathematical concept for distinction-making and complexity analysis. In: Trappl R (ed) Cybernetics and systems '90. World Science, Singapore, pp 335–342

    Google Scholar 

  • Heylighen et al. (1995) (Meta)systems as constraints on variation. A classification and natural history of metasystem transitions. World Futures 45(1):59–85

    CrossRef  Google Scholar 

  • Heylighen F (1999) The growth of structural and functional complexity during evolution. In: Heylighen F, Bollen J, Riegler A (eds) The evolution of complexity. Kluwer Academic, Dordrecht, pp 17–44

    MATH  Google Scholar 

  • Heylighen, F., Joslyn, C. and Turchin, V. (1995) (eds.): The quantum of evolution. Towards a theory of metasystem transitions. Gordon and Breach Science Publishers, New York. (Special issue, vol. 45(1) of ‘World Futures: the journal of general evolution’.)

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    CrossRef  Google Scholar 

  • Hubble E (1929) A relation between distance and radial velocity among extra-galactic nebulae. PNAS 15(3):168–173

    ADS  MATH  CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2001) Extrapolating a hierarchy of building block systems towards future neural network organisms. Acta Biotheor 49:171–189. https://doi.org/10.1023/A:1011949326096

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2010a) The Operator Hierarchy, a chain of closures linking matter life and artificial intelligence, PhD thesis. Radboud University, Nijmegen

    Google Scholar 

  • Jagers op Akkerhuis GAJM (2010b) Towards a hierarchical definition of life, the organism, and death. Found Sci 15:245–262

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2012) The pursuit of complexity. The utility of biodiversity from an evolutionary perspective. KNNV Publisher

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2014) General Laws and Centripetal science. Eur Rev 22:113–144

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2016) Evolution and transitions in complexity. The science of hierarchical organization of nature. Springer, Cham, Switzerland

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2018) Een realistische, trans-disciplinaire ontologie voor de empirische basis van de wetenschap: Bijdragen van de Operator Theorie. (A transdisciplinary realist ontology for the empirical basis in science: contributions of the Operator Theory). Researchgate https://doi.org/10.13140/RG.2.2.12851.12321

  • Jagers op Akkerhuis, G.A.J.M. (2019). ScienceBites – A fresh take on commonly used terms in science Wageningen Academic Publishers, 142 pp.

    Google Scholar 

  • Jagers op Akkerhuis GAJM, Damgaard C (1999) Using ‘resource dominance’ to explain and predict evolutionary success. Oikos 87:609–614

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM (2008) Analysing hierarchy in the organization of biological and physical systems. Biol Rev 83:1–12

    CrossRef  Google Scholar 

  • Jagers op Akkerhuis GAJM, van Straalen NM (1999) Operators, the Lego-bricks of nature, evolutionary transitions from fermions to neural networks. World Futures J Gen Evol 53(329-345)

    Google Scholar 

  • Jaros GG, Cloete A (1987) Biomatrix, the web of life. World Futures 23:203–224

    CrossRef  Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    ADS  CrossRef  Google Scholar 

  • Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Korn RW (2002) Biological hierarchies, their birth, death and evolution by natural selection. Biol Philos 17:199–221

    CrossRef  Google Scholar 

  • Lambert FL (1999) Shuffled cards, messy desks, and disorderly dorm rooms – examples of entropy increase? Nonsense! J Chem Educ 76:1385–1387

    CrossRef  Google Scholar 

  • Lambert FL (2002) Entropy is simple. Qualitatively. J Chem Educ 79:1241–1246

    CrossRef  Google Scholar 

  • Lambert FL (2007) Configurational entropy revisited. J Chem Educ 84:1548–1550

    CrossRef  Google Scholar 

  • Laszlo E (1972) Introduction to systems philosophy: towards a new paradigm of contemporary thought. Gordon and Breach, London

    Google Scholar 

  • Lineweaver CH (2006) 6 cosmological and biological reproducibility: limits on the maximum entropy production principle. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy. Understanding complex systems. Springer, Berlin, Heidelberg

    Google Scholar 

  • Lineweaver CH, Egan CA (2008) Life, gravity and the second law of thermodynamics. Phys Life Rev 5:225–242

    ADS  CrossRef  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    ADS  MathSciNet  MATH  CrossRef  Google Scholar 

  • Lotka AJ (1922a) Contribution to the energetics of evolution. Proc Natl Acad Sci 8:147–151

    ADS  CrossRef  Google Scholar 

  • Lotka AJ (1922b) Natural selection as a physical principle. Proc Natl Acad Sci 8:151–154

    ADS  CrossRef  Google Scholar 

  • Lotka AJ (1945) The law of evolution as a maximal principle. Hum Biol 17:167–194

    Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension (PDF). Science 156(3775):636–638

    ADS  CrossRef  Google Scholar 

  • Maupertuis de PL (1744) Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles; Accord between different laws of nature that seemed incompatible (English translation)

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. W.H. Freeman Spektrum, Oxford

    Google Scholar 

  • Meysman FJR, Bruers S (2013) Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Phil Trans R Soc B 365:1405–1416

    CrossRef  Google Scholar 

  • Miller JG (1978) Living systems. McGraw-Hill, New York

    Google Scholar 

  • Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics. Retrieved 2011-08-22.

    Google Scholar 

  • Moreno A, Mossio M (2015) Biological autonomy: a philosophical and theoretical enquiry. Springer, Dordrecht, the Netherlands

    Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf's law. Contemp Phys 46:323–351

    ADS  CrossRef  Google Scholar 

  • Noether E (1918) Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918:235–257.

    Google Scholar 

  • Pagels HR (1985) Perfect symmetry: the search for the beginning of time. Simon and Schuster, New York

    Google Scholar 

  • Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 mc/s. Astrophys J Lett 142:419–421

    ADS  CrossRef  Google Scholar 

  • Pernu TK, Annila A (2012) Natural emergence. Complexity

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos. Man’s new dialogue with nature, New York

    Google Scholar 

  • Prigogine I, Nicolis G, Babloyantz A (1972) Thermodynamics of evolution. Phys Today 25:23–28

    CrossRef  Google Scholar 

  • Pross A (2003) The driving force for life’s emergence: kinetic and thermodynamic considerations. J Theor Biol 220:393–406

    ADS  CrossRef  Google Scholar 

  • Rashevky N (1938) Mathematical biophysics: Physico-mathematical foundations of biology. University of Chicago Press, Chicago, IL, USA

    Google Scholar 

  • Salisbury F (1992) Plant physiology, 4th edn. Wadsworth, Belmont, CA

    Google Scholar 

  • Scheffer M (2009) Critical transitions in nature and society. Princeton studies in complexity

    Google Scholar 

  • Semaw S (2000) The World’s oldest stone artefacts from Gona, Ethiopia: their implications for understanding stone technology and patterns of human evolution between 2·6–1·5 million years ago. J Archaeol Sci 27:1197–1214

    CrossRef  Google Scholar 

  • Smith B (2004) Beyond concepts: ontology as reality representation. In: Varzi AC, Vieu L (eds) Formal ontology in information systems (FOIS), pp 1–12

    Google Scholar 

  • Spier F (1996) The structure of big history: from the Big Bang until today. Amsterdam University Press, Amsterdam

    CrossRef  Google Scholar 

  • Sprengel C (1839) Die Lehre vom Dünger oder Beschreibung Aller bei der Landwirthschaft gebräuchlicher vegetablilischer, animalischer und mineralischer Düngermaterialien, nebst Erklärung ihrer Wirkungsart, Leipzig

    Google Scholar 

  • Stikker A (1992) The transformation factor. Towards and ecological consciousness. Element, Rockport, USA

    Google Scholar 

  • Styer DF (2008) Entropy and evolution. Am J Phys 76:1031–1033

    ADS  CrossRef  Google Scholar 

  • Szathmáry E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374: 227--232

    Google Scholar 

  • Teilhard de Chardin P (1959) The Phenomenon of Man. Harper, New York. (Original: Editions du Seuil I, Paris, 1955)

    Google Scholar 

  • Teilhard de Chardin P (1969) The future of man. Collins, London. (Original: Editions du Seuil V, Paris, 1969)

    Google Scholar 

  • Turchin VF (1977) The phenomenon of science, a cybernetic approach to human evolution. Colombia University Press, New York

    Google Scholar 

  • Ulanowicz RE, Hannon BM (1987) Life and the production of entropy. Proc R Soc Lond B 232:181–192

    ADS  CrossRef  Google Scholar 

  • Varela FJ (1979) Principles of biological autonomy. North-Holland, New York

    Google Scholar 

  • Vogt L, Grobe P, Quast B, Bartolomaeus T (2011) Top-level categories of constitutively organized material entities. Suggestions for a formal top level ontology

    Google Scholar 

  • von Bertalanffy L (1950) An outline of general system theory. Br J Phil Sci 1:134

    Google Scholar 

  • von Bertalanffy L (1968) General system theory, foundations, development, applications. Penguin Books Ltd, Harmondsworth, Middlesex, England

    Google Scholar 

  • Waddington CH (1969) Paradigm for an evolutionary process. In: Waddington CH (ed) Towards a theoretical biology, Vol 2: sketches. Edinburgh University Press, Edinburgh, UK

    Google Scholar 

  • Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–976

    CrossRef  Google Scholar 

  • Willems, H.P. (2012). Why we need 'Conscious Artificial Intelligence'. https://mindconstruct.com/website/research

  • Young AM (1976) The reflexive universe. A Merloyd Lawrence book

    Google Scholar 

Download references

Acknowledgements

The author likes to thank Dr. Toon van Eijk for commenting on a draft of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jagers op Akkerhuis, G.A.J. (2022). The Operator Theory: A Yardstick for Complexity from Quarks to Memons—Relationships with Evolution and Thermodynamics. In: Georgiev, G.Y., Shokrollahi-Far, M. (eds) Efficiency in Complex Systems. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-69288-9_3

Download citation