Skip to main content

Approach to Cryptography from Differential Geometry with Example

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12596))

Abstract

We propose a public-key encryption scheme that arise from a kind of differential geometry called Finsler geometry. Our approach is first to observe a map of a tangent space to another tangent space, and find asymmetricity of linear parallel displacement, which is easy to compute but hard to invert. Then we construct an example of the map over the real numbers. By quantization, we propose a public-key encryption scheme. The scheme is proved to be IND-CCA2 secure under the new assumption of the decisional linear parallel displacement problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, M., Patrizio, G.: Finsler Metrics—A Global Approach. LNM, vol. 1591. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0073980

    Book  MATH  Google Scholar 

  2. Atanasiu, Gh: Partial Nondegenerate Finsler Spaces, pp. 35–60. Kluwer Academic Publishers, Lagrange and Finsler Geometry (1996)

    MATH  Google Scholar 

  3. Akhbar-Zadeh, H.: Sur les espaces de Finsler isotropes. C. R. Acad. Sci. de Paris 252, 2061–2063 (1961)

    MathSciNet  MATH  Google Scholar 

  4. Anastasiei, M.: A historical remark on the connections of Chern and Rund. Contemp. Math. Finsler Geom. 176, 171–177 (1996)

    Article  MathSciNet  Google Scholar 

  5. Anastasiei, M., Antonelli, P.: The differential geometry of Lagrangian which generate sprays. In: vol. of Kluwer Academic Publishers FTPH, no. 76, pp. 15–34 (1996)

    Google Scholar 

  6. Anastasiei, M., Shimada, H.: Deformations of Finsler metrics. In: Finsler Geometries, Kluwer Academic Publishers FTPH, vol. 109, pp. 53–67 (2000)

    Google Scholar 

  7. Anastasiei, M., Shimada, H., Sab\(\breve{a}\)u, V.S.: On the nonlinear connection of a Second Order Finsler Space, Algebras, Groups and Geometries, Hadronic Press, vol. 16, no. 1, pp. 1–10, March 1999

    Google Scholar 

  8. Antonelli, P.L.: Finslerian Geometries. A Meeting of Minds, Kluwer Publication (FTPH), vol. 1909 (2000)

    Google Scholar 

  9. Antonelli, P.L., Hrimiuc, D.: Symplectic transformations of the differential geometry of \(T^{*}M\). Nonlinear Anal. 36, 529–557 (1999)

    Article  MathSciNet  Google Scholar 

  10. Antonelli, P.L., Miron, R.: Lagrange and Finsler Geometry Applications to Physics and Biology. Kluwer Academic Publishers (1996)

    Google Scholar 

  11. Miron, R.: A Lagrangian theory of relativity, Preprint Nr.84, Univ. TimiÅŸoara, 53 (1985)

    Google Scholar 

  12. Miron, R.: A Lagrangian theory of relativity, (I, II), Analele Şt. Univ. "Al. I. Cuza" Iaşi, XXXII, s.1., Math., f.2, f.3, 37–62, 7–16 (1986)

    Google Scholar 

  13. Miron, R.: Lagrange geometry. Math. Comput. Model. 20(4/5), 25–40 (1994)

    Article  MathSciNet  Google Scholar 

  14. Miron, R.: General randers spaces. Lagrange and Finsler geometry, Ed. by Antonelli, P.L., Miron, R., no. 76, pp. 123–140 (1996)

    Google Scholar 

  15. Miron, R.: The Geometry of Higher-Order Lagrange Spaces, Applications to Mechanics and Physics, Kluwer Academic Publishers FTPH, no. 82 (1997)

    Google Scholar 

  16. Miron, R.: The Geometry of Higher-Order Finsler Spaces. Hadronic Press. Inc., USA (1998)

    MATH  Google Scholar 

  17. Miron, R.: The notion of higher order Finsler spaces. theory and applications. In: Finslerian Geometries. Kluwer Academic Publishers FTPH, vol. 109, pp. 193–200 (2000)

    Google Scholar 

  18. Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. Kluwer Academic Publishers (1994)

    Google Scholar 

  19. Miron, R., Anastasiei, M.: Vector Bundles and Lagrange spaces with Applications to Relativity, Balkan Society of Geometers Monographs and Textbooks Nr.1, Geometry B\(\grave{a}\)lkan press (1997)

    Google Scholar 

  20. Munteanu, G.: Generalized complex Lagrange spaces. In: Finslerian Geometries. Kluwer Academic Publishers. FTPH, vol. 109, pp. 209–223 (2000)

    Google Scholar 

  21. Aikou, T., Kozma, L.: Global aspects of Finsler geometry. In: Handbook of Global Analysis, pp. 1–39, 1211. Elsevier Sci. B. V., Amsterdam (2008)

    Google Scholar 

  22. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Math. Springer-Verlag, New York (2000)

    Book  Google Scholar 

  23. Chern, S.-S., Shen, Z.: Riemann-Finsler Geometry, volume 6 of Nankai Tracts in Mathematics. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2005)

    Book  Google Scholar 

  24. Crampin, M.: Randers spaces with reversible geodesics. Publ. Math. Debrecen 67(3–4), 401–409 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, Shigaken (1986)

    MATH  Google Scholar 

  26. Matsumoto, M.: Finsler geometry in the 20th-century. Handbook of Finsler Geometry, vol. 1, pp. 557–966. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  27. Nagano, T., Innami, N., Itokawa, Y., Shiohama, K.: Notes on reversibility and branching of geodesics in Finsler spaces, Iasi Ploytechic Inst. Bull.-Math. Theor. Mech. Phys. Sect. 9–18 (2019)

    Google Scholar 

  28. Nagano, T., Anada, H.: One-wayness of Public-Key Encryption Scheme Using Non-symmetry of Finsler Spaces (in Japanese) (Original title: Indistinguishability of Public-Key Encryption Scheme Using Non-symmetry of Finsler Spaces). In: Proceeding of SCIS2020 (2020)

    Google Scholar 

  29. Nagano, T., Anada, H.: Public-key encryption scheme using non-symmetry of Finsler spaces (in Japanese). Proc. CSS2019, 415–421 (2019)

    Google Scholar 

  30. Nagano, T.: Notes on the notion of the parallel displacement in Finsler geometry. Tensor (N.S.) 70(3), 302–310 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Nagano, T.: On the parallel displacement and parallel vector fields in Finsler geometry. Acta Math. Acad. Paedagog. Nyhazi. 26(2), 349–358 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Nagano, T.: A note on linear parallel displacements in Finsler geometry. J. Faculty Global Commun. Univ. Nagasaki 12, 195–205 (2011)

    Google Scholar 

  33. Nagano, T.: On the quantities W. L, K derived from linear parallel displacements in Finsler geometry. J. Faculty Global Commun. Univ. Nagasaki 14, 123–132 (2013)

    Google Scholar 

  34. Nagano, T.: On the existence of the curve to give the inverse linear parallel displacement (in Japanese). In: Proceeding of Annual meeting of 2018 The Mathematical Society of Japan, Geometry session, pp. 1–2 (2018)

    Google Scholar 

  35. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Florida (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Nagano .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

(1) Calculation of (2) (in p.3)

$$\begin{aligned} N^i_j(x,y)=\sum _{r}\gamma ^i_{rj}(x,y)y^r-\sum _{p,q,r}C^i_{jr}(x,y)\gamma ^r_{pq}(x,y)y^py^q, \end{aligned}$$

where

$$\begin{aligned}&\gamma ^i_{pq}(x,y)=\sum _{h}\frac{1}{2}g^{hi}\left( \frac{\partial g_{ph}}{\partial x^q}+\frac{\partial g_{hq}}{\partial x^p}-\frac{\partial g_{pq}}{\partial x^h}\right) ,\\&\qquad \qquad \;\; C^i_{jr}(x,y)=\sum _{h}\frac{1}{2}g^{hi}\frac{\partial g_{jh}}{\partial y^r}. \end{aligned}$$

Calculation of (3) (in p.3)

$$\begin{aligned} F^i_{jr}(x,y)=\sum _{h}\frac{1}{2}g^{hi}\left( \frac{\delta g_{jh}}{\delta x^r}+\frac{\delta g_{hr}}{\delta x^j}-\frac{\delta g_{jr}}{\delta x^h}\right) , \end{aligned}$$

where

$$\begin{aligned} \frac{\delta }{\delta x^i}=\frac{\partial }{\partial x^i}-\sum _{r}N^r_i\frac{\partial }{\partial y^r}. \end{aligned}$$

Here the indices \(h,i,j,\cdots ,p,q,r,\cdots \) of \(\sum \) run from 1 to \(n(=dimM)\).

(2) Metric tensor field: \(g_{ij}(c,\dot{c})\) ( in p.8.)

figure d

(3) Nonlinear Connection: \(N^i_j(c,\dot{c})=\sum _rF^i_{jr}\dot{c}^r\) ( in p.8)

figure e

(4) The components \(B_1^1, B_1^2, B_2^1, B_2^2\) of \(\varPi _{c_m}(t)\) ( in p.8)

figure f
figure g
figure h

(5) The components \(E_0, E_1, E_2\) of the energy \(E(v_1)\) ( in p.9)

figure i
figure j

(6) The components \(V_3^1, V_3^2\) of \(V_3=\varPi _c(\tau )V=(V_3^1,V_3^2)\) ( in p.9)

figure k
figure l
figure m
figure n

(7) We explain the concrete example as below

Let \(v=(6806, 2346)\) be a plaintext.

Encryption

\(v_0=d+dv=(8040,7778)\),

\(\tau =3, \beta _0=1\) then \(ct_0=\{5.58763\times 10^{19}, 2.64606\times 10^{18}, 1.47664\times 10^{18}\}\),

\(\tau =3, \beta _1=2\) then \(ct_1=\{8.73996\times 10^{17}, 4.13985\times 10^{16}, 2.31025\times 10^{16}\}\),

\(\tau =3, \beta _2=3\) then \(ct_2=\{7.68363\times 10^{16}, 3.64162\times 10^{15}, 2.03221\times 10^{15}\}\),

then we obtain the \(\text {ciphertext}=\{ct_0,ct_1,ct_2\}\).

Decryption

First, from \(ct_0\),

$$\begin{aligned} \begin{aligned}V=\varPi _c^{-1}(\tau )V_3&=(-3.10237\times 10^{15} - 1.14863\times 10^{13} \tau + 3.06421\times 10^{14} \tau ^2,\\&-1.72354\times 10^{15} + 6.4659\times 10^{13} \tau + 1.70234\times 10^{14} \tau ^2)\end{aligned} \end{aligned}$$

Further, from \(ct_1\) and \(ct_2\), we have others V. Next, from \(SKX=\{\frac{4}{3}, \frac{24570}{499}X^1, 3822X^2\}\), we can construct \(ct_i\cdot SKX\) as follows:

figure o

then we have the following linear system from (7)

and this system is solved unique and the solution \((X^1,X^2)\) is

(17)

Next, input the above \((X^1,X^2)\) to the Equations (8) and (16), then we have the equation of \(E(v_1)\)

$$\begin{aligned}&-1.73632\times 10^{44} + 3.51579\times 10^{44} \tau - 5.99366\times 10^{44} \tau ^2 - 2.21611\times 10^{43} \tau ^3\\&+ 1.20382\times 10^{44} \tau ^4 - 1.20558\times 10^{42} \tau ^5 - 5.9622\times 10^{42} \tau ^6=0. \end{aligned}$$

If we solve this equation, finally we have the integer \(\alpha \) as the value of \(\tau \) as follows

$$\begin{aligned} \alpha =3, \end{aligned}$$

where \(\tau = 3.00000,\ 2.98760\). By using the solution \(\alpha \) to (17), we can obtain the value of \(v_0=(v_0^1,v_0^2)\) and the plaintext \(v=(v^1,v^2)\) as follows:

$$\begin{aligned} v_0^1=X^1=8039.99999 \sim 8040,\ v_0^2=X^2=7778.00000\sim 7778, \end{aligned}$$
$$\begin{aligned} v^1=v_0^1-dv^1= 8040-1234=6806,\ v^2=v_0^2-dv^2= 7778-5432=2346.\ \ \ \ \Box \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagano, T., Anada, H. (2021). Approach to Cryptography from Differential Geometry with Example. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69255-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69254-4

  • Online ISBN: 978-3-030-69255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics