Skip to main content

AI for Digital Humanities and Computational Social Sciences

  • Chapter
  • First Online:
Reflections on Artificial Intelligence for Humanity

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12600))


AI raises multiple essential issues for the humanities and the social sciences. AI is obviously a major societal issue whose consequences are currently invading the public sphere raising a variety of questions of acceptability, privacy protection or economic impact, and involving expertise that span across the entire range of social and human research. But AI is also a new way of doing research, where massive data processing is made possible by techniques of machine and deep learning, offering new perspectives for analysis.

Reflecting about the nature of intelligence and humanity, but also helping the humanities and the social sciences to benefit from the methodological advances of AI: this is the double challenge that this chapter would like to tackle. We will present the major questions posed to artificial intelligence by the humanities and social sciences, to go through some of the proposed approaches, but also to show how artificial intelligence has become an essential working tool for this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

    Mask (?) of a dog, representing Anubis or Qebehsenouf, with movable jaw, Egypt, 21th dynasty (c. 1069–945), h: 19 cm, w: 11 cm, Paris, Louvre museum, N4096.

  2. 2.

    This paper uses “Sentiment analysis” algorithms, measuring the “general feeling” of a text, i.e. the “positive feeling” or “negative feeling” associated with that text.

  3. 3.

    This is a recurrent ambition that can be observed at every change of scientific paradigm. We can certainly find it in the positivist thought of literary history or in the linguistic turn and the horizon constituted by formal linguistics.


  1. Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  2. Farrell, M.: Lakatos and Feyeraben: research programmes and anarchism. In: Historical and Philosophical Foundations of Psychology, 46-68. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  3. Ackerman, A. (dir.): Golem! Avatars d’une légende d’argile, exhibition catalogue. MahJ/Hazan, Paris (2017). Laurence Bertrand-Dorléac (dir.), Artistes & Robots, exh. cat., Paris: RMN, 2018.

    Google Scholar 

  4. Rifkin, J.: The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era. Putnam Publishing Group, New York (1995)

    Google Scholar 

  5. Ganascia, J.-G. : Le mythe de la Singularité. Faut-il craindre l’intelligence artificielle ? Seuil, Paris (2017)

    Google Scholar 

  6. Moretti, F.: Distant Reading. Verso, London/New York (2013)

    Google Scholar 

  7. Gefen, A.: The Empirical Turn of Literary Studies” in Nicoletta Pireddu. Reframing Critical, Literary, and Cultural Theories, pp. 119–135. Palgrave Macmillan, Cham (2018)

    Google Scholar 


  9. Michel, J.-B., Shen, Y.K., Aiden, A.P., et al.: Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331(6014), 176–182 (2010)

    Article  Google Scholar 

  10. Moretti, F., Pestre, D.: Bankspeak. The Language of World Bank Reports. New Left Rev. 92, 75–99 (2015)

    Google Scholar 

  11. Lu, Y.: Caractérisation des genres/styles littéraires par l’extraction automatique des “motifs” dans les romans du 19e et 20e siècle, ongoing Ph.D. supervised by Thierry Poibeau, PSL/ENS

    Google Scholar 

  12. Cointet, J.-P., Parasie, S.: Ce que le Big Data fait à l’analyse sociologique des textes. Un panorama critique des recherches contemporaines. Rev. Française Sociol. 59, 533–557 (2018)

    Article  Google Scholar 

  13. Blei, D.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  14. DiMaggio, P., Nag, M., Blei, D.: Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of U.S. government arts fundig. Poetics 41(5), 570–606 (2013)

    Article  Google Scholar 

  15. Poibeau, T., Saint-Raymond, L.: Pricing Opinion and Tastes: The Art Market through Sentiment Analysis. DH2020@Ottawa (2020)

    Google Scholar 

  16. Boelaert, J., Ollion, É.: The great regression. Machine learning, econometrics, and the future of quantitative social sciences. Rev. Française Sociol. 59, 475–506 (2018)

    Article  Google Scholar 

  17. Moretti, F.: Literature, Measured. Literary Lab Pamphlets, no. 12, April 2016.

  18. Borgatti, S., Mehra, A., Brass, D.J., et al.: Network Analysis in the Social Sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  19. Venturini, T., Munk, A., Jacomy, M.: Actor-network vs network analysis vs digital networks are we talking about the same networks? In: Ribes, D., Vertesi, J. (eds.) DigitalSTS: A Handbook and Fieldguide. University Press, Princeton (2019)

    Google Scholar 

  20. Venturini, T., Jacomy, M., Jensen, P.: What do we see when we look at networks an introduction to visual network analysis and force-directed layouts. SSRN.

  21. Monti, F., Boscaini, D., Masci, J., et al.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 5425–5434 (2017)

    Google Scholar 

  22. Pal, S., Dong, Y., Thapa, B., et al.: Deep learning for network analysis: problems, approaches and challenges. In: Proceedings - IEEE Military Communications Conference MILCOM, pp. 588–593 (2016)

    Google Scholar 

  23. Grover, A., Leskovec, J.: node2vec. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 95 (2016)

    Google Scholar 

  24. Griener, P.: La république de l’œil. L’expérience de l’art au siècle des Lumières, Paris, Odile Jacob (2010)

    Google Scholar 

  25. Recht, R.: L’iconologie avant Warburg. Images Revues [En ligne], Hors-série 4 (2013). Accessed 11 June 2020

  26. Joyeux-Prunel, B.: Visual contagions, the art historian, and the digital strategies to work on them. Artl@s Bull. 8(3), 131 (2019). Article 8. Accessed 11 June 2020.

  27. Accessed 11 June 2020

  28. Accessed 11 June 2020

  29. Accessed 11 June 2020

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  31. Seguin, B., Striolo, C., di Lenardo, I., Kaplan, F.: Visual link retrieval in a database of paintings. In: Hua, G., Jégou, H. (eds.) ECCV 2016. Lecture Notes in Computer Science, vol. 9913, pp. 753–767. Springer, Cham (2016).

    Chapter  Google Scholar 

  32. Seguin, B.: The Replica project: building a visual search engine for art historians. ACM Crossroads 24(3), 24–29 (2018)

    Article  Google Scholar 

  33. Seguin, B.: Making large art historical photo archives searchable. Ph.D., Ecole polytechnique fédérale de Lausanne (supervised by Frédéric Kablan and Isabella diLenardo) (2018). Accessed 11 June 2020

  34. Ginosar, S., Shen, X., Dwivedi, K., Honig, E., Aubry, M.: The burgeoning computer-art symbiosis. computers help us understand art. Art helps us teach computers. XRDS: Crossroads ACM Mag. Stud. – Comput. Art Arch. 24(3), 30–33 (2018). Accessed 11 June 2020.

  35. Suchman, L., Trigg, R. H.: Artificial intelligence as craftwork. In: Learning in Doing: Social, Cognitive, and Computational Perspectives. Understanding Practice: Perspectives on Activity and Context, pp. 144–178. University Press, Cambridge (1993)

    Google Scholar 

  36. Mackenzie, A., Learners, M.: Archaeology of a Data Practice. MIT Press, Cambridge Mass (2017)

    Google Scholar 

  37. Saracevic, T.: Interdisciplinary nature of information science. Ciência Inf. 24(1), 36–41 (1995)

    Google Scholar 

  38. Thagard, P.: Being Interdisciplinary: trading zones in cognitive science. In: Derry, S.J., Schunn, C.D., Gernsbacher, M.A. (eds.) Interdisciplinary Collaboration: An Emerging Cognitive Science, pp. 317–339. Erlbaum, Mahwa (2005)

    Google Scholar 

  39. Ribes, D., Hoffman, A.S., Slota, S.C., Bowker, G.C.: The logic of domains. Soc. Stud. Sci. 49(3), 281–309 (2019)

    Article  Google Scholar 

  40. Woolgar, S.: Why not a sociology of machine? The case of sociology and artificial intelligence. Sociology 19(4), 557–572 (1985)

    Article  Google Scholar 

  41. Carley, K.M.: Artificial intelligence within sociology. Sociol. Methods Res. 25, 1–30 (1996)

    Google Scholar 

  42. Grimmer, J.: We are all social scientists now: how big data, machine learning, and causal inference work together. PS: Polit. Sci. Polit. 48(01), 80–83 (2015)

    Google Scholar 

  43. Desrosières, A.: La politique des grands nombres: histoire de la raison statistique. La Découverte, Paris (1993)

    Google Scholar 

  44. Osborne, T., Rose, N.: Do the social sciences create phenomena? The example of public opinion research. Br. J. Sociol. 50(3), 367–396 (1999)

    Article  Google Scholar 

  45. Turnbull, D.: Masons, Tricksters and Cartographers. Routledge, London (2000)

    Google Scholar 

  46. Burrell, J.: How the machine ‘thinks’: understanding opacity in machine learning algorithms. Big Data Soc. 3(1), 2053951715622512 (2016)

    Article  Google Scholar 

  47. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  48. Metzler, K., Kim, D.A., Allum, N., et al.: Who is doing computational social science? Trends in Big Data Research A SAGE White Paper (2016)

    Google Scholar 

  49. Meyer, E.T., Schroeder, R.: Knowledge Machines Digital Transformations of the Sciences and Humanities. MIT Press, Cambridge (2015)

    Book  Google Scholar 

  50. Salganik, M.: Bit by Bit: Social Research in the Digital Age. Princeton, University Press (2019)

    Google Scholar 

  51. Wallach, H.: Computational social science: toward a collaborative future. In: Avarez, M. (ed.) Computational Social Science: Discovery and Prediction, pp. 307–315. MIT Press, Cambridge (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexandre Gefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gefen, A., Saint-Raymond, L., Venturini, T. (2021). AI for Digital Humanities and Computational Social Sciences. In: Braunschweig, B., Ghallab, M. (eds) Reflections on Artificial Intelligence for Humanity. Lecture Notes in Computer Science(), vol 12600. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69127-1

  • Online ISBN: 978-3-030-69128-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics