Skip to main content

Update on Cutibacterium acnes

  • Chapter
  • First Online:
Acne

Part of the book series: Updates in Clinical Dermatology ((UCD))

  • 1349 Accesses

Abstract

Acne is one of the most common skin inflammatory diseases, representing the top three most prevalent skin conditions in the general population worldwide (Johnson and Roberts, Vital Health Stat 11 (212):i–v, 1–72, 1978; Wolkenstein et al., Arch Dermatol 139(12):1614–9, 2003; Rea et al., Br J Prev Soc Med 30(2):107–14, 1976; Bhate and Williams, Br J Dermatol 168(3):474–85, 2013). The complex physiopathology of this dermatosis involves several key players: sebaceous gland, activation of innate immunity and microbiome with a commensal bacteria Cutibacterium acnes. In this book chapter, we propose to give an overview of the most current findings about acne physiopathology and future medical challenges ahead. This chapter will focus on the commensal bacterium Cutibacterium acnes, as it has a pivotal role in acne physiopathology, its interaction with the different microorganisms constituting skin microbiota and the innate immune system. Based on the scientific literature, this book chapter will also review the innovative therapeutic options that will be developed in the future years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Antimicrobial peptide

CAMP:

Christie-Atkins-Munch-Petersen (e.g. CAMP2, etc.)

CRISPR:

Clustered regularly interspaced short palindromic repeats

D/PAMP:

Damage-/pathogen-associated molecular pattern

EVs:

Extracellular vesicles

hBD2:

Human β-defensin 2

HYL-IA:

Variant of hyaluronidase (HYL) found in phylotype IA

HYL-IB and II:

Variant of hyaluronidase (HYL) found in phylotypes IB and II

IFN-γ:

Interferon- γ

IL:

Interleukin (e.g. IL-8, IL-6, etc.)

MMPs:

Matrix metalloproteinases (e.g. MMP-9, MMP-13, etc.)

NK cells:

Natural killer cells

NLRP3:

NOD-like receptor family, pyrin domain containing 3

PAR-2:

Protease-activated receptor-2

PCR:

Polymerase chain reaction

QS:

Quorum sensing

RIS-1/psoriasin:

Retinoic acid-inducible skin-specific gene

RNA:

Ribonucleic acid

RNases:

Ribonucleases

SCORAD:

Scoring atopic dermatitis

SLST:

Single-locus sequence typing

TGF-β:

Transforming growth factor-β

Th17/Th1:

T helper 17/T helper 1 cells

TIMP-2:

Tissue inhibitor of metalloproteinases (e.g. TIMP-2, TIMP-4, etc.)

TLRs:

Toll-like receptors (e.g. TLR-2, TLR-4, etc.)

TNF-α:

Tumour necrosis factor-α

References

  1. Johnson MT, Roberts J. Skin conditions and related need for medical care among persons 1–74 years. United States, 1971–1974. Vital Health Stat 11. 1978;(212):i–v, 1–72.

    Google Scholar 

  2. Wolkenstein P, Grob J-J, Bastuji-Garin S, Ruszczynski S, Roujeau J-C, Revuz J, et al. French people and skin diseases: results of a survey using a representative sample. Arch Dermatol. 2003;139(12):1614–9; discussion 1619.

    Article  PubMed  Google Scholar 

  3. Rea JN, Newhouse ML, Halil T. Skin disease in Lambeth. A community study of prevalence and use of medical care. Br J Prev Soc Med. 1976;30(2):107–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474–85.

    Article  CAS  PubMed  Google Scholar 

  5. Oh J, Byrd AL, Deming C, Conlan S, NISC Comparative Sequencing Program, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–55.

    Article  CAS  PubMed  Google Scholar 

  7. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32(Suppl 2):5–14.

    Article  PubMed  Google Scholar 

  9. Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;31(Suppl 5):8–12.

    Article  PubMed  CAS  Google Scholar 

  10. Rocha MA, Bagatin E. Skin barrier and microbiome in acne. Arch Dermatol Res. 2018;310(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  11. Cummins CS, Johnson JL. Corynebacterium parvum: a synonym for Propionibacterium acnes? J Gen Microbiol. 1974;80(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  12. Corvec S, Dagnelie M-A, Khammari A, Dréno B. Taxonomy and phylogeny of Cutibacterium (formerly Propionibacterium) acnes in inflammatory skin diseases. Ann Dermatol Venereol. 2019;146(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  13. Corvec S. Clinical and biological features of cutibacterium (Formerly Propionibacterium) avidum, an underrecognized microorganism. Clin Microbiol Rev. 2018;31(3):e00064-17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aubin GG, Portillo ME, Trampuz A, Corvec S. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance. Méd Mal Infect. 2014;44(6):241–50.

    Article  CAS  PubMed  Google Scholar 

  15. McDowell A, Valanne S, Ramage G, Tunney MM, Glenn JV, McLorinan GC, et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol. 2005;43(1):326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDowell A, Perry AL, Lambert PA, Patrick S. A new phylogenetic group of Propionibacterium acnes. J Med Microbiol. 2008;57(Pt 2):218–24.

    Article  CAS  PubMed  Google Scholar 

  17. McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PLoS One. 2013;8(9):e70897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Yan R, Zhong Q, Ngo S, Bangayan NJ, Nguyen L, et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 2015;9(9):2078–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allhorn M, Arve S, Brüggemann H, Lood R. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci Rep. 2016;6:36412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miskin JE, Farrell AM, Cunliffe WJ, Holland KT. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiol Read Engl. 1997;143(Pt 5):1745–55.

    Article  CAS  Google Scholar 

  21. Nazipi S, Stødkilde-Jørgensen K, Scavenius C, Brüggemann H. The skin bacterium Propionibacterium acnes employs two variants of hyaluronate lyase with distinct properties. Microorganisms. 2017;5(3):57.

    Article  PubMed Central  CAS  Google Scholar 

  22. Christensen GJM, Scholz CFP, Enghild J, Rohde H, Kilian M, Thürmer A, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics. 2016;17:152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Claudel J-P, Auffret N, Leccia M-T, Poli F, Corvec S, Dréno B. Staphylococcus epidermidis: a potential new player in the physiopathology of acne? Dermatology. 2019;235(4):287–94.

    Article  PubMed  Google Scholar 

  24. Douglas HC, Gunter SE. The taxonomic position of corynebacterium acnes. J Bacteriol. 1946;52(1):15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422–32.

    Article  PubMed  CAS  Google Scholar 

  26. Dekio I, Culak R, Misra R, Gaulton T, Fang M, Sakamoto M, et al. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. Int J Syst Evol Microbiol. 2015;65(12):4776–87.

    Article  CAS  PubMed  Google Scholar 

  27. McDowell A, Barnard E, Liu J, Li H, Patrick S. Proposal to reclassify Propionibacterium acnes type I as Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int J Syst Evol Microbiol. 2016;66(12):5358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brüggemann H, Lomholt HB, Tettelin H, Kilian M. CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes. PLoS One. 2012;7(3):e34171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. McDowell A. Over a decade of recA and tly gene sequence typing of the skin bacterium Propionibacterium acnes: what have we learnt? Microorganisms. 2017;6(1):1.

    Article  PubMed Central  CAS  Google Scholar 

  30. Barnard E, Nagy I, Hunyadkürti J, Patrick S, McDowell A. Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes. J Clin Microbiol. 2015;53(4):1149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McDowell A, Barnard E, Nagy I, Gao A, Tomida S, Li H, et al. An expanded multilocus sequence typing scheme for Propionibacterium acnes: investigation of “pathogenic”, “commensal” and antibiotic resistant strains. PLoS One. 2012;7(7):e41480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scholz CFP, Jensen A, Lomholt HB, Brüggemann H, Kilian M. A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo. PLoS One. 2014;9(8):e104199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kilian M, Scholz CFP, Lomholt HB. Multilocus sequence typing and phylogenetic analysis of Propionibacterium acnes. J Clin Microbiol. 2012;50(4):1158–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dagnelie M-A, Khammari A, Dréno B, Corvec S. Cutibacterium acnes molecular typing: time to standardize the method. Clin Microbiol Infect. 2018;24(11):1149–55.

    Article  CAS  PubMed  Google Scholar 

  35. Saint-Jean M, Frenard C, Le Bras M, Aubin GG, Corvec S, Dréno B. Testosterone-induced acne fulminans in twins with Kallmann’s syndrome. JAAD Case Rep. 2015;1(1):27–9.

    Article  PubMed  Google Scholar 

  36. Paugam C, Corvec S, Saint-Jean M, Le Moigne M, Khammari A, Boisrobert A, et al. Propionibacterium acnes phylotypes and acne severity: an observational prospective study. J Eur Acad Dermatol Venereol. 2017;31(9):e398–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dagnelie M-A, Corvec S, Saint-Jean M, Bourdès V, Nguyen J-M, Khammari A, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back. Acta Derm Venereol. 2018;98(2):262–7.

    Article  CAS  PubMed  Google Scholar 

  38. Saint-Jean M, Corvec S, Nguyen J-M, Le Moigne M, Boisrobert A, Khammari A, et al. Adult acne in women is not associated with a specific type of Cutibacterium acnes. J Am Acad Dermatol. 2019;81(3):851–2.

    Article  PubMed  Google Scholar 

  39. Lomholt HB, Scholz CFP, Brüggemann H, Tettelin H, Kilian M. A comparative study of Cutibacterium (Propionibacterium) acnes clones from acne patients and healthy controls. Anaerobe. 2017;47:57–63.

    Article  CAS  PubMed  Google Scholar 

  40. Kwon HH, Yoon JY, Park SY, Suh DH. Analysis of distribution patterns of Propionibacterium acnes phylotypes and Peptostreptococcus species from acne lesions. Br J Dermatol. 2013;169(5):1152–5.

    Article  CAS  PubMed  Google Scholar 

  41. Sadhasivam S, Sinha M, Saini S, Kaur SP, Gupta T, Sengupta S, et al. Heterogeneity and antibiotic resistance in Propionibacterium acnes isolates and its therapeutic implications: blurring the lines between commensal and pathogenic phylotypes. Dermatol Ther. 2016;29(6):451–4.

    Article  PubMed  Google Scholar 

  42. Barnard E, Liu J, Yankova E, Cavalcanti SM, Magalhães M, Li H, et al. Strains of the Propionibacterium acnes type III lineage are associated with the skin condition progressive macular hypomelanosis. Sci Rep. 2016;6:31968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petersen RLW, Scholz CFP, Jensen A, Brüggemann H, Lomholt HB. Propionibacterium Acnes phylogenetic type III is associated with progressive macular hypomelanosis. Eur J Microbiol Immunol. 2017;7(1):37–45.

    Article  CAS  Google Scholar 

  44. Corvec S, Luchetta J, Aubin GG. Is hemolysis a clinical marker of Propionibacterium acnes orthopedic infection or a phylogenetic marker? Am J Orthop Belle Mead NJ. 2015;44(3):E61–2.

    PubMed  Google Scholar 

  45. Christensen GJM, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5(2):201–15.

    Article  CAS  PubMed  Google Scholar 

  46. Fujimura S, Nakamura T. Purification and properties of a bacteriocin-like substance (acnecin) of oral Propionibacterium acnes. Antimicrob Agents Chemother. 1978;14(6):893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valanne S, McDowell A, Ramage G, Tunney MM, Einarsson GG, O’Hagan S, et al. CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiol Read Engl. 2005;151(Pt 5):1369–79.

    Article  CAS  Google Scholar 

  48. Lheure C, Grange PA, Ollagnier G, Morand P, Désiré N, Sayon S, et al. TLR-2 recognizes Propionibacterium acnes CAMP factor 1 from highly inflammatory strains. PLoS One. 2016;11(11):e0167237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Holland C, Mak TN, Zimny-Arndt U, Schmid M, Meyer TF, Jungblut PR, et al. Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiol. 2010;10:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tyner H, Patel R. Hyaluronidase in clinical isolates of Propionibacterium acnes. Int J Bacteriol. 2015;2015:218918.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Furustrand Tafin U, Corvec S, Betrisey B, Zimmerli W, Trampuz A. Role of Rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2012;56(4):1885–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Achermann Y, Goldstein EJC, Coenye T, Shirtliff ME. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27(3):419–40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Coenye T, Peeters E, Nelis HJ. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol. 2007;158(4):386–92.

    Article  CAS  PubMed  Google Scholar 

  54. Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, Zouboulis CC, et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012;167(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kuehnast T, Cakar F, Weinhäupl T, Pilz A, Selak S, Schmidt MA, et al. Comparative analyses of biofilm formation among different Cutibacterium acnes isolates. Int J Med Microbiol. 2018;308(8):1027–35.

    Article  CAS  PubMed  Google Scholar 

  56. Leyden JJ, McGinley KJ, Cavalieri S, Webster GF, Mills OH, Kligman AM. Propionibacterium acnes resistance to antibiotics in acne patients. J Am Acad Dermatol. 1983;8(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  57. Sardana K, Gupta T, Garg VK, Ghunawat S. Antibiotic resistance to Propionobacterium acnes: worldwide scenario, diagnosis and management. Expert Rev Anti-Infect Ther. 2015;13(7):883–96.

    Article  CAS  PubMed  Google Scholar 

  58. Walsh TR, Efthimiou J, Dréno B. Systematic review of antibiotic resistance in acne: an increasing topical and oral threat. Lancet Infect Dis. 2016;16(3):e23–33.

    Article  CAS  PubMed  Google Scholar 

  59. Nakase K, Sakuma Y, Nakaminami H, Noguchi N. Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV. Anaerobe. 2016;42:166–71.

    Article  CAS  PubMed  Google Scholar 

  60. Nakase K, Yoshida A, Saita H, Hayashi N, Nishijima S, Nakaminami H, et al. Relationship between quinolone use and resistance of Staphylococcus epidermidis in patients with acne vulgaris. J Dermatol. 2019;46(9):782–6.

    Article  CAS  PubMed  Google Scholar 

  61. Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosroi W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm. 2010;392(1–2):304–10.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Dai A, Huang S, Kuo S, Shu M, Tapia CP, et al. Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Benef Microbes. 2014;5(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  63. Greenberg EP. Bacterial communication and group behavior. J Clin Invest. 2003;112(9):1288–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nealson KH, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979;43(4):496–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiol Read Engl. 2007;153(Pt 12):3923–38.

    Article  CAS  Google Scholar 

  66. Pearson JP, Feldman M, Iglewski BH, Prince A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun. 2000;68(7):4331–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pirhonen M, Flego D, Heikinheimo R, Palva ET. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 1993;12(6):2467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019;11(490):eaat8329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lwin SM, Kimber I, McFadden JP. Acne, quorum sensing and danger. Clin Exp Dermatol. 2014;39(2):162–7.

    Article  CAS  PubMed  Google Scholar 

  70. Tyner H, Patel R. Propionibacterium acnes biofilm – a sanctuary for Staphylococcus aureus? Anaerobe. 2016;40:63–7.

    Google Scholar 

  71. Wollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon KP. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio. 2014;5(4):e01286–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  73. Lee E-Y, Choi D-Y, Kim D-K, Kim J-W, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009;9(24):5425–36.

    Article  CAS  PubMed  Google Scholar 

  74. Jeon J, Mok HJ, Choi Y, Park SC, Jo H, Her J, et al. Proteomic analysis of extracellular vesicles derived from Propionibacterium acnes. Proteomics Clin Appl. 2017;11(1–2):1600040.

    Article  CAS  Google Scholar 

  75. Choi E-J, Lee HG, Bae I-H, Kim W, Park J, Lee TR, et al. Propionibacterium acnes-derived extracellular vesicles promote acne-like phenotypes in human epidermis. J Invest Dermatol. 2018;138(6):1371–9.

    Article  CAS  PubMed  Google Scholar 

  76. Paetzold B, Willis JR, Pereira de Lima J, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7(1):95.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chien AL, Tsai J, Leung S, Mongodin EF, Nelson AM, Kang S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019;155(4):425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nakase K, Hayashi N, Akiyama Y, Aoki S, Noguchi N. Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015. J Dermatol. 2017;44(11):1248–54.

    Article  CAS  PubMed  Google Scholar 

  79. O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6(1):177.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, Kemény L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124(5):931–8.

    Article  CAS  PubMed  Google Scholar 

  81. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–205.

    Article  CAS  PubMed  Google Scholar 

  82. Jasson F, Nagy I, Knol AC, Zuliani T, Khammari A, Dréno B. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity. Exp Dermatol. 2013;22(9):587–92.

    Article  CAS  PubMed  Google Scholar 

  83. Do TH, Modlin R. 906 Cutibacterium acnes RNA activates the human inflammatory response via TLR8. J Invest Dermatol. 2019;139(5):S156.

    Article  Google Scholar 

  84. Guy R, Green MR, Kealey T. Modeling acne in vitro. J Invest Dermatol. 1996;106(1):176–82.

    Article  CAS  PubMed  Google Scholar 

  85. Kistowska M, Meier B, Proust T, Feldmeyer L, Cozzio A, Kuendig T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135(1):110–8.

    Article  PubMed  Google Scholar 

  86. Ebrahim AA, Mustafa AI, El-Abd AM. Serum interleukin-17 as a novel biomarker in patients with acne vulgaris. J Cosmet Dermatol. 2019;18(6):1975–9.

    Article  PubMed  Google Scholar 

  87. Lee D-Y, Yamasaki K, Rudsil J, Zouboulis CC, Park GT, Yang J-M, et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J Invest Dermatol. 2008;128(7):1863–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zouboulis CC, Beutler C, Merk HF, Baron JM. RIS-1/psoriasin expression in epithelial skin cells indicates their selective role in innate immunity and in inflammatory skin diseases including acne. Dermatoendocrinology. 2017;9(1):e1338993.

    Article  CAS  Google Scholar 

  89. Saint-Jean M, Khammari A, Jasson F, Nguyen J-M, Dréno B. Different cutaneous innate immunity profiles in acne patients with and without atrophic scars. Eur J Dermatol. 2016;26(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  90. Moon J, Yoon JY, Yang JH, Kwon HH, Min S, Suh DH. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br J Dermatol. 2019;181(6):1226–37.

    Article  CAS  PubMed  Google Scholar 

  91. Sanford JA, Zhang L-J, Williams MR, Gangoiti JA, Huang C-M, Gallo RL. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. 2016;1(4):eaah4609.

    Article  PubMed  Google Scholar 

  92. Thiboutot DM, Dréno B, Abanmi A, Alexis AF, Araviiskaia E, Barona Cabal MI, et al. Practical management of acne for clinicians: an international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2018;78(2 Suppl 1):S1–S23, e1.

    Article  PubMed  Google Scholar 

  93. Lee YB, Byun EJ, Kim AHS. Potential role of the microbiome in acne: a comprehensive review. J Clin Med. 2019;8(7):987.

    Article  CAS  PubMed Central  Google Scholar 

  94. Valente Duarte De Sousa IC. New and emerging drugs for the treatment of acne vulgaris in adolescents. Expert Opin Pharmacother. 2019;20(8):1009–24.

    Article  CAS  PubMed  Google Scholar 

  95. Dreno B. Topical antibacterial therapy for acne vulgaris. Drugs. 2004;64(21):2389–97.

    Article  CAS  PubMed  Google Scholar 

  96. Cong T-X, Hao D, Wen X, Li X-H, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res. 2019;311(5):337–49.

    Article  CAS  PubMed  Google Scholar 

  97. Kircik LH. The role of benzoyl peroxide in the new treatment paradigm for acne. J Drugs Dermatol. 2013;12(6):s73–6.

    CAS  PubMed  Google Scholar 

  98. Bojar RA, Cunliffe WJ, Holland KT. Disruption of the transmembrane pH gradient--a possible mechanism for the antibacterial action of azelaic acid in Propionibacterium acnes and Staphylococcus epidermidis. J Antimicrob Chemother. 1994;34(3):321–30.

    Article  CAS  PubMed  Google Scholar 

  99. Dispenza MC, Wolpert EB, Gilliland KL, Dai JP, Cong Z, Nelson AM, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132(9):2198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McCoy WH, Otchere E, Rosa BA, Martin J, Mann CM, Mitreva M. Skin ecology during sebaceous drought-how skin microbes respond to isotretinoin. J Invest Dermatol. 2019;139(3):732–5.

    Article  CAS  PubMed  Google Scholar 

  101. Dagnelie M-A, Montassier E, Khammari A, Mounier C, Corvec S, Dréno B. Inflammatory skin is associated with changes in the skin microbiota composition on the back of severe acne patients. Exp Dermatol. 2019;28(8):961–7.

    Article  PubMed  Google Scholar 

  102. McLaughlin J, Watterson S, Layton AM, Bjourson AJ, Barnard E, McDowell A. Propionibacterium acnes and acne vulgaris: new insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms. 2019;7(5):128.

    Article  CAS  PubMed Central  Google Scholar 

  103. Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152(4):799–811, e7.

    Article  PubMed  Google Scholar 

  104. Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J v. 2008;v(6):1357–63.

    Google Scholar 

  105. Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bowe WP, Filip JC, DiRienzo JM, Volgina A, Margolis DJ. Inhibition of propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. J Drugs Dermatol. 2006;5(9):868–70.

    PubMed  PubMed Central  Google Scholar 

  107. Pavicic T, Wollenweber U, Farwick M, Korting HC. Anti-microbial and -inflammatory activity and efficacy of phytosphingosine: an in vitro and in vivo study addressing acne vulgaris. Int J Cosmet Sci. 2007;29(3):181–90.

    Article  CAS  PubMed  Google Scholar 

  108. Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76(9):4163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gueniche A, Benyacoub J, Philippe D, Bastien P, Kusy N, Breton L, et al. Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur J Dermatol. 2010;20(6):731–7.

    PubMed  Google Scholar 

  110. Kang BS, Seo J-G, Lee G-S, Kim J-H, Kim SY, Han YW, et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol. 2009;47(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  111. Muizzuddin N, Maher W, Sullivan M, Schnittger S, Mammone T. Physiological effect of a probiotic on skin. J Cosmet Sci. 2012;63(6):385–95.

    PubMed  Google Scholar 

  112. Marchetti F, Capizzi R, Tulli A. Efficacy of regulators of the intestinal bacterial flora in the therapy of acne vulgaris. Clin Ter. 1987;122(5):339–43.

    CAS  PubMed  Google Scholar 

  113. Studying the skin microbiome and the potential of a topical probiotic cream for patients with acne – full text view – ClinicalTrials.gov [Internet]. [cited 2019 Aug 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT03469076

  114. Webster GF, Cummins CS. Use of bacteriophage typing to distinguish Propionibacterium acne types I and II. J Clin Microbiol. 1978;7(1):84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang Y, Hata TR, Tong YL, Kao M-S, Zouboulis CC, Gallo RL, et al. The anti-inflammatory activities of Propionibacterium acnes CAMP factor-targeted acne vaccines. J Invest Dermatol. 2018;138(11):2355–64.

    Article  CAS  PubMed  Google Scholar 

  116. Contassot E. Vaccinating against acne: benefits and potential pitfalls. J Invest Dermatol. 2018;138(11):2304–6.

    Article  CAS  PubMed  Google Scholar 

  117. Nakatsuji T, Tang DC, Zhang L, Gallo RL, Huang C-M. Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. PLoS One. 2011;6(4):e14797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu P-F, Nakatsuji T, Zhu W, Gallo RL, Huang C-M. Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine. 2011;29(17):3230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lo C-W, Lai Y-K, Liu Y-T, Gallo RL, Huang C-M. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor. J Invest Dermatol. 2011;131(2):401–9.

    Article  CAS  PubMed  Google Scholar 

  120. Nakatsuji T, Liu Y-T, Huang C-P, Zouboulis CC, Gallo RL, Huang C-M. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One. 2008;3(2):e1551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Nakatsuji T, Liu Y-T, Huang C-P, Zoubouis CC, Gallo RL, Huang C-M. Antibodies elicited by inactivated propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. J Invest Dermatol. 2008;128(10):2451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dagnelie M-A, Corvec S, Saint-Jean M, Nguyen J-M, Khammari A, Dréno B. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process. J Eur Acad Dermatol Venereol. 2019;33(12):2340–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Ange Dagnelie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dagnelie, MA., Corvec, S., Khammari, A., Dréno, B. (2021). Update on Cutibacterium acnes. In: Suh, D.H. (eds) Acne. Updates in Clinical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-68996-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68996-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68995-7

  • Online ISBN: 978-3-030-68996-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics