Skip to main content

The Study of Improving the Accuracy of Convolutional Neural Networks in Face Recognition Tasks

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12665)


The article discusses the efficiency of convolutional neural networks in solving the problem of face recognition of tennis players. The characteristics of training and accuracy on a test set for networks of various architectures are compared. Application of weight drop out methods and data augmentation to eliminate the effect of retraining is also considered. Finally, the transfer learning from other known networks is used. It is shown how, for initial data, it is possible to increase recognition accuracy by 25% compared to a typical convolutional neural network.


  • Recognition
  • Convolutional neural networks
  • Regularization
  • Drop out
  • Augmentation
  • Learning transfer
  • Cats vs Dogs
  • Federer vs Nadal

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-68821-9_1
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-68821-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Shilpi, S., Prasad, S.V.: Techniques and challenges of face recognition: a critical review. Proc. Comput. Sci. 143, 536–543 (2018)

    CrossRef  Google Scholar 

  2. Zhang, Y., Lv, P., Lu, X.: A deep learning approach for face detection and location on highway. In: IOP Conference Series: Materials Science and Engineering, vol. 435, p. 012004 (2018).

  3. Ye, L., Ying, W., Liu, H., Hao, J.: Expression-insensitive 3D face recognition by the fusion of multiple subject-specific curves. Neurocomputing 275, 1295–1307 (2018)

    CrossRef  Google Scholar 

  4. Logan, A.J., Gordon, G.E., Loffler, G.: Contributions of individual face features to face discrimination. Vis. Res. 137, 29–39 (2017)

    CrossRef  Google Scholar 

  5. Guillaume, D., Chao, X., Kishore, S.: Face recognition in mobile phones. Depart. Electr. Eng. Stanford Univ. (2010)

    Google Scholar 

  6. Guillaume, D.: Facial recognition tech secures enterprise access control. Biometric Technol. Today 2017(10), 2–3 (2017).

    CrossRef  Google Scholar 

  7. Geng, D., Fei, S., Anni, C.: Face recognition using SURF features. Proc. SPIE – Int. Soc. Optic. Eng. 2, 6–12 (2009).

    CrossRef  Google Scholar 

  8. Chen, Z., Lam, O., Jacobson, A., Milford, M.: Convolutional Neural Network-based Place Recognition. Access mode:

  9. Boubacar, B.T., Kamsu-Foguem, B., Tangara, F.: Deep convolution neural network for image recognition. Ecol. Inform. 48, 257–268 (2018).

    CrossRef  Google Scholar 

  10. Coşkun, M., Uçar, A., Yıldırım, O., Demir, Y.: Face recognition based on convolutional neural network. MEES (2017).

    CrossRef  Google Scholar 

  11. Andriyanov, N.A., Volkov, Al.K., Volkov, An.K., Gladkikh, A.A. Danilov, S.D.: Automatic x-ray image analysis for aviation security within limited computing resources. In: IOP Conference Series: Materials Science and Engineering, vol. 862, p. 052009 (2020).

  12. Vasil’ev, K.K., Dement’ev, V.E., Andriyanov, N.A.: Application of mixed models for solving the problem on restoring and estimating image parameters. Pattern Recogn. Image Anal. 26(1), 240–247 (2016).

    CrossRef  Google Scholar 

  13. Andriyanov, N.A., Vasiliev, K.K., Dementiev, V.E.: Anomalies detection on spatially inhomogeneous polyzonal images. CEUR Workshop Proc. 1901, 10–15 (2017).

    CrossRef  Google Scholar 

  14. Vasiliev, K.K., Andriyanov, N.A.: Synthesis and analysis of doubly stochastic models of images. CEUR Workshop Proc. 2005, 145–154 (2017)

    Google Scholar 

  15. Andriyanov, N.A., Dementiev, V.E.: Developing and studying the algorithm for segmentation of simple images using detectors based on doubly stochastic random fields. Pattern Recogn. Image Anal. 29(1), 1–9 (2019).

    CrossRef  Google Scholar 

  16. Tanwir, K.: Computer Vision - Detecting objects using Haar Cascade Classifier. Electronic resource. Access mode: (2019)

  17. Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V., Kalinin, A.: Albumentations: fast and flexible image augmentations. arXiv:1809.06839v1 [cs.CV] (2018)

  18. Andriyanov, N.A., Dement’ev, V.E.: Application of mixed models of random fields for the segmentation of satellite images. CEUR Workshop Proc. 2210, 219–226 (2018)

    Google Scholar 

  19. Andriyanov, N.A.: Software complex for representation and processing of images with complex structure. CEUR Workshop Proc. 2274, 10–22 (2018)

    Google Scholar 

  20. Electronic resource. Access mode:

Download references


The study was funded by RFBR, Project № 19-29-09048, RFBR and Ulyanovsk Region, Project № 19-47-730011.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nikita Andriyanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Andriyanov, N., Dementev, V., Tashlinskiy, A., Vasiliev, K. (2021). The Study of Improving the Accuracy of Convolutional Neural Networks in Face Recognition Tasks. In: , et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68820-2

  • Online ISBN: 978-3-030-68821-9

  • eBook Packages: Computer ScienceComputer Science (R0)