Skip to main content

Image Anomaly Detection by Aggregating Deep Pyramidal Representations

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Anomaly detection consists in identifying, within a dataset, those samples that significantly differ from the majority of the data, representing the normal class. It has many practical applications, e.g. ranging from defective product detection in industrial systems to medical imaging. This paper focuses on image anomaly detection using a deep neural network with multiple pyramid levels to analyze the image features at different scales. We propose a network based on encoding-decoding scheme, using a standard convolutional autoencoders, trained on normal data only in order to build a model of normality. Anomalies can be detected by the inability of the network to reconstruct its input. Experimental results show a good accuracy on MNIST, FMNIST and the recent MVTec Anomaly Detection dataset.

This work was partially funded by Beantech srl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

    Google Scholar 

  2. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016)

    Article  Google Scholar 

  3. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018, Part III. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  4. Ambrogioni, L., Güçlü, U., van Gerven, M.A., Maris, E.: The ernel mixture network: A nonparametric method for conditional density estimation of continuous random variables. arXiv preprint arXiv:1705.07111 (2017)

  5. Antonie, M.L., Zaïane, O.R., Coman, A.: Application of data mining techniques for medical image classification. In: Proceedings of the Second International Conference on Multimedia Data Mining, MDMKDD 2001, pp. 94–101. (2001)

    Google Scholar 

  6. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  7. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  8. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: International joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2019)

    Google Scholar 

  9. Bishop, C.M.: Mixture Density Networks. Aston University, Birmingham (1994)

    Google Scholar 

  10. Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4080–4088 (2018)

    Google Scholar 

  11. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. CoRR abs/1901.03407 (2019). http://arxiv.org/abs/1901.03407

  12. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 151–1558 (2009)

    Article  Google Scholar 

  13. Chen, P., Yang, S., McCann, J.A.: Distributed real-time anomaly detection in networked industrial sensing systems. IEEE Trans. Ind. Electron. 62(6), 3832–3842 (2015)

    Article  Google Scholar 

  14. Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., Kloft, M.: Image anomaly detection with generative adversarial networks. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018, Part I. LNCS (LNAI), vol. 11051, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_1

    Chapter  Google Scholar 

  15. Huang, S.H., Pan, Y.C.: Automated visual inspection in the semiconductor industry: a survey. Comput. Ind. 66, 1–10 (2015)

    Article  Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  18. Klushyn, A., Chen, N., Kurle, R., Cseke, B., van der Smagt, P.: Learning hierarchical priors in VAEs. In: Advances in Neural Information Processing Systems, vol. 32, pp. 2866–2875. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/8553-learning-hierarchical-priors-in-vaes.pdf

  19. Kumagai, A., Iwata, T., Fujiwara, Y.: Transfer anomaly detection by inferring latent domain representations. In: Advances in Neural Information Processing Systems, pp. 2467–2477 (2019)

    Google Scholar 

  20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  21. Mishra, P., Piciarelli, C., Foresti, G.L.: A neural network for image anomaly detection with deep pyramidal representations and dynamic routing. Int. J. Neural Syst. 30(10), 2050060 (2020)

    Article  Google Scholar 

  22. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  23. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  24. Perera, P., Nallapati, R., Xiang, B.: Ocgan: One-class novelty detection using GANs with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  25. Piciarelli, C., Avola, D., Pannone, D., Foresti, G.L.: A vision-based system for internal pipeline inspection. IEEE Trans. Ind. Inf. 15(6), 3289–3299 (2018)

    Article  Google Scholar 

  26. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  27. Piciarelli, C., Mishra, P., Foresti, G.L.: Image anomaly detection with capsule networks and imbalanced datasets. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019, Part I. LNCS, vol. 11751, pp. 257–267. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30642-7_23

    Chapter  Google Scholar 

  28. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencoders. In: Advances in Neural Information Processing Systems, pp. 6822–6833 (2018)

    Google Scholar 

  29. Qin, X., Cao, L., Rundensteiner, E.A., Madden, S.: Scalable kernel density estimation-based local outlier detection over large data streams. In: EDBT, pp. 421–432 (2019)

    Google Scholar 

  30. Ruff, L., et al.: Deep one-class classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR, Stockholmsmässan, Stockholm Sweden (2018)

    Google Scholar 

  31. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  32. Viroli, C., McLachlan, G.J.: Deep Gaussian mixture models. Stat. Comput. 29(1), 43–51 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wulsin, D., Blanco, J., Mani, R., Litt, B.: Semi-supervised anomaly detection for EEG waveforms using deep belief nets. In: 2010 Ninth International Conference on Machine Learning and Applications, pp. 436–441 (2010)

    Google Scholar 

  34. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  35. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 665–674. ACM, New York (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Piciarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, P., Piciarelli, C., Foresti, G.L. (2021). Image Anomaly Detection by Aggregating Deep Pyramidal Representations. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12664. Springer, Cham. https://doi.org/10.1007/978-3-030-68799-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68799-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68798-4

  • Online ISBN: 978-3-030-68799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics