Audi AG: Driving Dataset (2019). https://www.a2d2.audi/a2d2/en.html. Accessed 12 Apr 2020
Blei, D., Jordan, M.: Variational inference for dirichlet process mixtures. J. Bayesian Anal. 1, 121–144 (2006)
MathSciNet
CrossRef
Google Scholar
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight Uncertainty in Neural Network. In: Proceedings of the 32nd ICML, vol. 37, pp. 1613–1622. PMLR, Lille, France (2015)
Google Scholar
Choi, S., Lee, K., Lim, S., Oh, S.: Uncertainty-aware learning from demonstration using mixture density networks with sampling-free variance modeling. In: 2018 IEEE ICRA, pp. 6915–6922. IEEE, Brisbane, QLD, Australia (2018)
Google Scholar
DeVries, T., Taylor, G.W.: Learning Confidence for Out-of-Distribution Detection in Neural Networks arxiv:1802.04865v1 (2018)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1
CrossRef
Google Scholar
Gal, Y.: Uncertainty in Deep Learning. Ph.D. thesis, University of Cambridge (2016)
Google Scholar
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In: Proceedings of The 33rd ICML, vol. 48, pp. 1050–1059. JMLR.org, New York (2016)
Google Scholar
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE ICCV, pp. 2980–2988. IEEE, Venice, Italy (2017)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE CVPR, pp. 770–778. IEEE, Las Vegas, NV, USA (2016)
Google Scholar
Hendrycks, D., Gimpel, K.: A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks arxiv:1610.02136v3 (2017)
Hüllermeier, E., Waegeman, W.: Aleatoric and Epistemic Uncertainty in Machine Learning: A Tutorial Introduction (2019)
Google Scholar
Ilg, E., Cicek, O., Galesso, S., Klein, A., Makansi, O., Hutter, F., Brox, T.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: ECCV, pp. 652–667. Munich, Germany (2018)
Google Scholar
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. In: Proceedings of the 31st NIPS, pp. 6405–6416. Curran Associates Inc, Red Hook, NY, USA (2017)
Google Scholar
Liang, S., Li, Y., Srikant, R.: Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks arxiv:1706.02690v4 (2018)
Liu, J.Z., Paisley, J., Kioumourtzoglou, M.A., Coull, B.: Accurate uncertainty estimation and decomposition in ensemble learning. In: Proceedings of the 33rd NIPS, pp. 8952–8963. Curran Associates Inc, Vancouver, Canada (2019)
Google Scholar
Malinin, A., Gales, M.: Predictive Uncertainty Estimation via Prior Networks. In: Proceedings of the 32nd NIPS, pp. 7047–7058. Curran Associates Inc, Red Hook, NY, USA (2018)
Google Scholar
Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to Segment Object Candidates. In: Proceedings of the 28th NIPS, vol. 2, pp. 1990–1998. MIT Press, Cambridge, MA, USA (2015)
Google Scholar
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection. In: 2016 IEEE CVPR, pp. 779–788. IEEE, Las Vegas, NV, USA (2016)
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE TPAMI 39(6), 1137–1149 (2017)
CrossRef
Google Scholar
Shalev, G., Adi, Y., Keshet, J.: Out-of-Distribution Detection using Multiple Semantic Label Representations. In: Proceedings of the 32nd NIPS, pp. 7375–7385. Curran Associates Inc. (2018)
Google Scholar
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE TPAMI 39(4), 640–651 (2017)
CrossRef
Google Scholar
Sieman, R.: Strange Off-Road Dirt Bikes & Vehicles (2013), https://www.off-road.com/dirtbike/feature/strange-offroad-dirt-bikes-vehicles-53605.html?printable Accessed 12 Apr 2020
Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)
CrossRef
Google Scholar
Yuan, Y., Chen, X., Wang, J.: Object-Contextual Representations for Semantic Segmentation arxiv:1909.11065v2 (2019)