Skip to main content

Low Dimensional Visual Attributes: An Interpretable Image Encoding

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12663))

Included in the following conference series:

Abstract

Deep convolutional networks (DCNs) as black-boxes make many computer vision models hard to interpret. In this paper, we present an interpretable encoding for images that represents the objects as a composition of parts and the parts themselves as a mixture of learned prototypes. We found that this representation is well suited for low-label image recognition problems such as few-shot learning (FSL), zero-shot learning (ZSL) and domain adaptation (DA). Our image encoding model with simple task predictors performs favorably against state of the art approaches in each of these tasks. Via crowdsourced results, we also show that this image encoding using parts and prototypes is interpretable to humans and agrees with their visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 819–826 (2013)

    Google Scholar 

  2. Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  3. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems, pp. 8930–8941 (2019)

    Google Scholar 

  4. Chen, L., Zhang, H., Xiao, J., Liu, W., Chang, S.F.: Zero-shot visual recognition using semantics-preserving adversarial embedding network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2018)

    Google Scholar 

  5. Dong, H., Fu, Y., Sigal, L., Hwang, S.J., Jiang, Y.G., Xue, X.: Learning to separate domains in generalized zero-shot and open set learning: a probabilistic perspective. arXiv preprint arXiv:1810.07368 (2018)

  6. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. University of Montreal 1341, no. 3, p. 1 (2009)

    Google Scholar 

  7. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1778–1785. IEEE (2009)

    Google Scholar 

  8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017)

  9. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. arXiv preprint arXiv:1706.05208 (2017)

  10. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.: DeViSE: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  11. Han, Z., Fu, Z., Yang, J.: Learning the redundancy-free features for generalized zero-shot object recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  12. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  13. Hou, R., Chang, H., Bingpeng, M., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: Advances in Neural Information Processing Systems, pp. 4003–4014 (2019)

    Google Scholar 

  14. Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 801–810 (2019)

    Google Scholar 

  15. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  16. Huynh, D., Elhamifar, E.: Fine-grained generalized zero-shot learning via dense attribute-based attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4483–4493 (2020)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Kumar Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4281–4289 (2018)

    Google Scholar 

  19. Kumar Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  20. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  22. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  23. Li, K., Zhang, Y., Li, K., Fu, Y.: Adversarial feature hallucination networks for few-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  24. Li, M., Zhai, Y.M., Luo, Y.W., Ge, P.F., Ren, C.X.: Enhanced transport distance for unsupervised domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  25. Li, W., Xu, J., Huo, J., Wang, L., Gao, Y., Luo, J.: Distribution consistency based covariance metric networks for few-shot learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8642–8649 (2019)

    Google Scholar 

  26. Liu, B., Kang, H., Li, H., Hua, G., Vasconcelos, N.: Few-shot open-set recognition using meta-learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  27. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)

    Google Scholar 

  28. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  29. Liu, S., Chen, J., Pan, L., Ngo, C.W., Chua, T.S., Jiang, Y.G.: Hyperbolic visual embedding learning for zero-shot recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  30. Misra, I., Gupta, A., Hebert, M.: From red wine to red tomato: composition with context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1792–1801 (2017)

    Google Scholar 

  31. Munkhdalai, T., Yu, H.: Meta networks. arXiv preprint arXiv:1703.00837 (2017)

  32. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  33. Oreshkin, B., López, P.R., Lacoste, A.: TADAM: task dependent adaptive metric for improved few-shot learning. In: Advances in Neural Information Processing Systems, pp. 721–731 (2018)

    Google Scholar 

  34. Purushwalkam, S., Nickel, M., Gupta, A., Ranzato, M.: Task-driven modular networks for zero-shot compositional learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3593–3602 (2019)

    Google Scholar 

  35. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge (2014)

    Google Scholar 

  36. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)

  37. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z.: Generalized zero-and few-shot learning via aligned variational autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8247–8255 (2019)

    Google Scholar 

  38. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  39. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  40. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  41. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365 (2017)

  42. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  43. Sylvain, T., Petrini, L., Hjelm, D.: Locality and compositionality in zero-shot learning. arXiv preprint arXiv:1912.12179 (2019)

  44. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200 (2016)

  45. Tang, L., Wertheimer, D., Hariharan, B.: Revisiting pose-normalization for fine-grained few-shot recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14352–14361 (2020)

    Google Scholar 

  46. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 4 (2017)

    Google Scholar 

  47. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  48. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset. Technical report (2011)

    Google Scholar 

  49. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  50. Wang, S., Chen, X., Wang, Y., Long, M., Wang, J.: Progressive adversarial networks for fine-grained domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  51. Wang, X., Yu, F., Wang, R., Darrell, T., Gonzalez, J.E.: TAFE-Net: task-aware feature embeddings for low shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1831–1840 (2019)

    Google Scholar 

  52. Wang, Y.-X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  53. Chen, L., Zhang, H., Xiao, J., Liu, W., Chang, S.F.: Zero-shot visual recognition using semantics-preserving adversarial embedding network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2018)

    Google Scholar 

  54. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 5419–5428 (2018)

    Google Scholar 

  55. Xu, R., Liu, P., Wang, L., Chen, C., Wang, J.: Reliable weighted optimal transport for unsupervised domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  56. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Learning embedding adaptation for few-shot learning. arXiv preprint arXiv:1812.03664 (2018)

  57. Yu, Y., Ji, Z., Han, J., Zhang, Z.: Episode-based prototype generating network for zero-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  58. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: International Conference on Computer Vision, vol. 6 (2017)

    Google Scholar 

  59. Zhu, P., Wang, H., Saligrama, V.: Generalized zero-shot recognition based on visually semantic embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3003 (2019)

    Google Scholar 

  60. Zhu, P., Wang, H., Saligrama, V.: Learning classifiers for target domain with limited or no labels. In: International Conference on Machine Learning, pp. 7643–7653 (2019)

    Google Scholar 

  61. Zhu, Y., Xie, J., Tang, Z., Peng, X., Elgammal, A.: Semantic-guided multi-attention localization for zero-shot learning. In: Advances in Neural Information Processing Systems, pp. 14943–14953 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengkai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, P., Zhu, R., Mishra, S., Saligrama, V. (2021). Low Dimensional Visual Attributes: An Interpretable Image Encoding. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12663. Springer, Cham. https://doi.org/10.1007/978-3-030-68796-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68796-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68795-3

  • Online ISBN: 978-3-030-68796-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics