Ahmad, S., Scheinkman, L.: How can we be so dense? The benefits of using highly sparse representations. arXiv preprint arXiv:1903.11257 (2019)
Ayinde, B.O., Inanc, T., Zurada, J.M.: On correlation of features extracted by deep neural networks. In: International Joint Conference on Neural Networks (IJCNN), Proceedings, pp. 1–8 (2019)
Google Scholar
Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 30, 2650–2661 (2019)
CrossRef
Google Scholar
Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 3969–3979 (2017)
CrossRef
Google Scholar
Bao, Y., Jiang, H., Dai, L., Liu, C.: Incoherent training of deep neural networks to de-correlate bottleneck features for speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6980–6984. IEEE (2013)
Google Scholar
Bengio, Y., Bergstra, J.S.: Slow, decorrelated features for pretraining complex cell-like networks. In: Advances in Neural Information Processing Systems, pp. 99–107 (2009)
Google Scholar
Changpinyo, S., Sandler, M., Zhmoginov, A.: The power of sparsity in convolutional neural networks. arXiv preprint arXiv:1702.06257 (2017)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Google Scholar
Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L., Batra, D.: Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068 (2015)
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Proceedings, pp. 113–123 (2019)
Google Scholar
Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (2018)
Google Scholar
Gale, T., Elsen, E., Hooker, S.: The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574 (2019)
Gavrilov, A.D., Jordache, A., Vasdani, M., Deng, J.: Preventing model overfitting and underfitting in convolutional neural networks. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 10(4), 19–28 (2018)
CrossRef
Google Scholar
Gomez, A.N., et al.: Learning sparse networks using targeted dropout. arXiv (2019)
Google Scholar
Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016)
MATH
Google Scholar
Guo, H., Mao, Y., Zhang, R.: Mixup as locally linear out-of-manifold regularization. In: AAAI Conference on Artificial Intelligence (AAAI), Proceedings, pp. 3714–3722 (2019)
Google Scholar
Guo, Y., Zhang, C., Zhang, C., Chen, Y.: Sparse DNNs with improved adversarial robustness. In: Advances in Neural Information Processing Systems, pp. 242–251 (2018)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML), Proceedings, pp. 448–456 (2015)
Google Scholar
Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6
CrossRef
Google Scholar
Klemm, S., Ortkemper, R.D., Jiang, X.: Deploying deep learning into practice: a case study on fundus segmentation. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 411–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_35
CrossRef
Google Scholar
Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 4313–4324. PMLR (2020)
Google Scholar
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)
Google Scholar
Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network pruning. In: International Conference on Learning Representations (2018)
Google Scholar
Mehta, D., Kim, K.I., Theobalt, C.: On implicit filter level sparsity in convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 520–528 (2019)
Google Scholar
Miller, D.J., Rao, A.V., Rose, K., Gersho, A.: A global optimization technique for statistical classifier design. IEEE Trans. Signal Process. 44(12), 3108–3122 (1996)
CrossRef
Google Scholar
Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: 5th International Conference on Learning Representations, ICLR 2017-Conference Track Proceedings (2019)
Google Scholar
Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing. Neural Comput. 4(4), 473–493 (1992)
CrossRef
Google Scholar
Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., Hinton, G.E.: Regularizing neural networks by penalizing confident output distributions. In: International Conference on Learning Representations (ICLR), Proceedings (2017)
Google Scholar
Prechelt, L.: Early stopping - but when? In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_3
CrossRef
Google Scholar
Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon, Y., Keckler, S.W.: Compressing DMA engine: leveraging activation sparsity for training deep neural networks. In: 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 78–91 (2018)
Google Scholar
Seelig, J.D., et al.: Two-photon calcium imaging from head-fixed drosophila during optomotor walking behavior. Nat. Methods 7(7), 535 (2010)
CrossRef
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computational and Biological Learning Society (2015)
Google Scholar
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15(1), 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Tu, Z., et al.: A survey of variational and CNN-based optical flow techniques. Sig. Process. Image Commun. 72, 9–24 (2019)
CrossRef
Google Scholar
Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456), 1273–1276 (2000)
CrossRef
Google Scholar
Werpachowski, R., György, A., Szepesvári, C.: Detecting overfitting via adversarial examples. In: Advances in Neural Information Processing Systems, pp. 7856–7866 (2019)
Google Scholar
Yaguchi, A., Suzuki, T., Asano, W., Nitta, S., Sakata, Y., Tanizawa, A.: Adam induces implicit weight sparsity in rectifier neural networks. In: IEEE International Conference on Machine Learning and Applications (ICMLA), Proceedings, pp. 318–325 (2018)
Google Scholar
Yang, Q., Mao, J., Wang, Z., Li, H.: DASNet: dynamic activation sparsity for neural network efficiency improvement. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1401–1405. IEEE (2019)
Google Scholar
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (ICLR), Proceedings (2017)
Google Scholar
Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A study on overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893 (2018)
Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, pp. 3592–3602 (2019)
Google Scholar