Skip to main content

ICPR 2020 - Competition on Harvesting Raw Tables from Infographics

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12668)

Abstract

This work summarizes the results of the second Competition on Harvesting Raw Tables from Infographics (ICPR 2020 CHART-Infographics). Chart Recognition is difficult and multifaceted, so for this competition we divide the process into the following tasks: Chart Image Classification (Task 1), Text Detection and Recognition (Task 2), Text Role Classification (Task 3), Axis Analysis (Task 4), Legend Analysis (Task 5), Plot Element Detection and Classification (Task 6.a), Data Extraction (Task 6.b), and End-to-End Data Extraction (Task 7). We provided two sets of datasets for training and evaluation of the participant submissions. The first set is based on synthetic charts (Adobe Synth) generated from real data sources using matplotlib. The second one is based on manually annotated charts extracted from the Open Access section of the PubMed Central (UB PMC). More than 25 teams registered out of which 7 submitted results for different tasks of the competition. While results on synthetic data are near perfect at times, the same models still have room to improve when it comes to data extraction from real charts. The data, annotation tools, and evaluation scripts have been publicly released for academic use.

Keywords

  • Chart recognition
  • Competition
  • Chart dataset

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-68793-9_27
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-68793-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/pmc/.

  2. 2.

    https://chartinfo.github.io/.

  3. 3.

    www.datacatalog.worldbank.org/dataset/world-development-indicators.

  4. 4.

    www.datacatalog.worldbank.org/dataset/gender-statistics.

  5. 5.

    www.visualize.data.gov.in.

  6. 6.

    www.kaggle.com/unitednations/global-commodity-trade-statistics/data.

  7. 7.

    www.kaggle.com/muonneutrino/us-census-demographic-data/data.

  8. 8.

    www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs.

  9. 9.

    www.matplotlib.org/.

  10. 10.

    https://chartinfo.github.io/.

References

  1. Böschen, F., Beck, T., Scherp, A.: Survey and empirical comparison of different approaches for text extraction from scholarly figures. Multimedia Tools Appl. 77(22), 29475–29505 (2018). https://doi.org/10.1007/s11042-018-6162-7

    CrossRef  Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  3. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  4. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. arXiv preprint arXiv:1908.10357 (2019)

  5. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  7. Davila, K., Setlur, S., Doermann, D., Bhargava, U.K., Govindaraju, V.: Chart mining: a survey of methods for automated chart analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020). https://doi.org/10.1109/TPAMI.2020.2992028

  8. Davila, K., et al.: ICDAR 2019 competition on harvesting raw tables from infographics (chart-infographics). In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1594–1599. IEEE (2019)

    Google Scholar 

  9. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  10. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. He, T., Tian, Z., Huang, W., Shen, C., Qiao, Y., Sun, C.: An end-to-end TextSpotter with explicit alignment and attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5020–5029 (2018)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  16. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)

    MathSciNet  CrossRef  Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  18. Liu, J., Liu, X., Sheng, J., Liang, D., Li, X., Liu, Q.: Pyramid mask text detector. arXiv preprint arXiv:1903.11800 (2019)

  19. Liu, Y., Lu, X., Qin, Y., Tang, Z., Xu, J.: Review of chart recognition in document images. In: Visualization and Data Analysis, p. 865410 (2013)

    Google Scholar 

  20. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  22. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    CrossRef  Google Scholar 

  23. Smith, R.: An overview of the Tesseract OCR engine. In: International Conference on Document Analysis and Recognition, vol. 2, pp. 629–633. IEEE (2007)

    Google Scholar 

  24. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  25. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  26. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  27. Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5551–5560 (2017)

    Google Scholar 

Download references

Acknowledgment

This material is based upon work partially supported by the National Science Foundation under Grant No. OAC/DMR 1640867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Davila .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 151 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Davila, K., Tensmeyer, C., Shekhar, S., Singh, H., Setlur, S., Govindaraju, V. (2021). ICPR 2020 - Competition on Harvesting Raw Tables from Infographics. In: , et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)