Alammari, A., Islam, A.R., Oh, J., Tavanapong, W., Wong, J., De Groen, P.C.: Classification of ulcerative colitis severity in colonoscopy videos using CNN. In: Proceedings of the ACM International Conference on Information Management and Engineering (ACM ICIME), pp. 139–144 (2017). https://doi.org/10.1145/3149572.3149613
Angermann, Q., et al.: Towards real-time polyp detection in colonoscopy videos: adapting still frame-based methodologies for video sequences analysis. In: Cardoso, M.J., et al. (eds.) CARE/CLIP -2017. LNCS, vol. 10550, pp. 29–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67543-5_3
CrossRef
Google Scholar
Bernal, J., Aymeric, H.: MICCAI endoscopic vision challenge polyp detection and segmentation (2017). https://endovissub2017-giana.grand-challenge.org/home/. Accessed 11 Dec 2017
Bernal, J., et al.: Polyp detection benchmark in colonoscopy videos using GTCreator: a novel fully configurable tool for easy and fast annotation of image databases. In: Proceedings of Computer Assisted Radiology and Surgery (CARS) (2018). https://hal.archives-ouvertes.fr/hal-01846141
Bloice, M.D., Roth, P.M., Holzinger, A.: Biomedical image augmentation using Augmentor. Bioinformatics (Oxford Engl.) 35(21), 4522–4524 (2019). https://doi.org/10.1093/bioinformatics/btz259
CrossRef
Google Scholar
Borgli, H., et al.: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7 (2020). https://doi.org/10.1038/s41597-020-00622-y. Article no. 283
Bychkov, D., et al.: Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8(1), 3395 (2018). https://doi.org/10.1038/s41598-018-21758-3
CrossRef
Google Scholar
Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Google Scholar
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv:1802.02611 (2018)
Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: Proceedings of the Annual Conference on Advances in Neural Information Processing Systems (NeurIPS), pp. 4467–4475 (2017)
Google Scholar
Dutta, A., Bhattacharjee, R.K., Barbhuiya, F.A.: Efficient detection of lesions during endoscopy. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Galdran, A., Carneiro, G., Ballester, M.A.G.: A hierarchical multi-task approach to gastrointestinal image analysis. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Ghatwary, N.M., Ye, X., Zolgharni, M.: Esophageal abnormality detection using DenseNet based faster R-CNN with gabor features. IEEE Access 7, 84374–84385 (2019). https://doi.org/10.1109/ACCESS.2019.2925585
CrossRef
Google Scholar
Guo, Y., Bernal, J., Matuszewski, B.J.: Polyp segmentation with fully convolutional deep neural networks–extended evaluation study. J. Imaging 6(7), 69 (2020)
CrossRef
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Google Scholar
He, Q., Bano, S., Stoyanov, D., Zuo1, S.: Hybrid loss with network trimming for disease recognition in digestive endoscopy. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Hewett, D.G., Kahi, C.J., Rex, D.K.: Efficacy and effectiveness of colonoscopy: how do we bridge the gap? Gastrointest. Endosc. Clin. 20(4), 673–684 (2010). https://doi.org/10.1016/j.giec.2010.07.011
CrossRef
Google Scholar
Hicks, S., et al.: ACM multimedia BioMedia 2019 grand challenge overview. In: Proceedings of the ACM International Conference on Multimedia (ACM MM), pp. 2563–2567 (2019). https://doi.org/10.1145/3343031.3356058
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6402–6411 (2019). https://doi.org/10.1109/CVPR.2019.00657
International Agency for Research on Cancer - WHO: Cancer fact sheets (2019). https://gco.iarc.fr/today/fact-sheets-cancers. Accessed 16 Dec 2019
Jha, D., Riegler, M., Johansen, D., Halvorsen, P., Johansen, H.: DoubleU-Net: a deep convolutional neural network for medical image segmentation. In: Proceeding of the International Symposium on Computer Based Medical Systems (CBMS) (2020)
Google Scholar
Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: Proceedings of the International Symposium on Multimedia (ISM), pp. 225–230 (2019). https://doi.org/10.1109/ISM46123.2019.00049
Kaminski, M.F., et al.: Quality indicators for colonoscopy and the risk of interval cancer. N. Engl. J. Med. 362(19), 1795–1803 (2010). https://doi.org/10.1056/NEJMoa0907667
CrossRef
Google Scholar
Khan, Z., Tahir, M.A., Memon, S.: Medical diagnostic by data bagging for various instances of neural network. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Kolesnikov, A., et al.: Big Transfer (BiT): general visual representation learning. arXiv preprint arXiv:1912.11370, June 2019
Lee, S.H., et al.: Endoscopic experience improves interobserver agreement in the grading of esophagitis by Los Angeles classification: conventional endoscopy and optimal band image system. Gut Liver 8(2), 154 (2014). https://doi.org/10.5009/gnl.2014.8.2.154
CrossRef
Google Scholar
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)
Google Scholar
Luo, Z., Che, L., He, J.: A hierarchical multi-task approach to gastrointestinal image analysis. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014(239) (2014)
Google Scholar
Min, M., Su, S., He, W., Bi, Y., Ma, Z., Liu, Y.: Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci. Rep. 9(1), 2881 (2019). https://doi.org/10.1038/s41598-019-39416-7
CrossRef
Google Scholar
Mori, Y., et al.: Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann. Intern. Med. 169(6), 357–366 (2018). https://doi.org/10.7326/M18-0249
CrossRef
Google Scholar
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
MathSciNet
MATH
Google Scholar
Pogorelov, K., et al.: A holistic multimedia system for gastrointestinal tract disease detection. In: Proceedings of the ACM on Multimedia Systems Conference (MMSYS), pp. 112–123 (2017). https://doi.org/10.1145/3193740
Pogorelov, K., et al.: Deep learning and hand-crafted feature based approaches for polyp detection in medical videos. In: Proceedings of the IEEE International Symposium on Computer-Based Medical Systems (CBMS). IEEE (2018)
Google Scholar
Pogorelov, K., et al.: Efficient disease detection in gastrointestinal videos-global features versus neural networks. Multimedia Tools Appl. 76(21), 22493–22525 (2017). https://doi.org/10.1007/s11042-017-4989-y
CrossRef
Google Scholar
Pogorelov, K., et al.: Medico multimedia task at mediaeval 2018. In: Proceeding of the MediaEval Benchmarking Initiative for Multimedia Evaluation Workshop (MediaEval) (2018)
Google Scholar
Pogorelov, K., et al.: GPU-accelerated real-time gastrointestinal diseases detection. In: Proceedings of the International Symposium on Computer-Based Medical Systems (CBMS), pp. 185–190. IEEE (2016). https://doi.org/10.1109/CBMS.2016.63
Riegler, M., et al.: EIR - efficient computer aided diagnosis framework for gastrointestinal endoscopies. In: Proceedings of the IEEE International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2016). https://doi.org/10.1109/CBMI.2016.7500257
Riegler, M., et al.: Multimedia for medicine: the medico task at MediaEval 2017. In: Proceeding of the MediaEval Benchmarking Initiative for Multimedia Evaluation Workshop (MediaEval) (2017)
Google Scholar
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014). https://doi.org/10.1007/s11548-013-0926-3
CrossRef
Google Scholar
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 6105–6114 (2019)
Google Scholar
Thambawita, V., et al.: The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. In: Proceeding of the MediaEval Benchmarking Initiative for Multimedia Evaluation Workshop (MediaEval) (2018)
Google Scholar
Thambawita, V.L., et al.: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. ACM Trans. Comput. Healthcare 1 (2020)
Google Scholar
Tomar, N.K., Jha, D., Ali, S., Johansen, H.D.J.D., Riegler, M.A., Halvorsen, P.: DDANet: dual decoder attention network for automatic polyp segmentation. In: Proceedings of the ICPR 2020 Workshops and Challenges. LNCS. Springer (2020)
Google Scholar
Van Doorn, S.C., et al.: Polyp morphology: an interobserver evaluation for the Paris classification among international experts. Am. J. Gastroenterol. 110(1), 180–187 (2015). https://doi.org/10.1038/ajg.2014.326
CrossRef
Google Scholar
Wang, Y., Tavanapong, W., Wong, J., Oh, J.H., De Groen, P.C.: Polyp-Alert: near real-time feedback during colonoscopy. Comput. Methods Programs Biomed. 120(3), 164–179 (2015). https://doi.org/10.1016/j.cmpb.2015.04.002
CrossRef
Google Scholar
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431 (2016)