Abstract
In this work, we introduce and discuss Quaternion Generative Adversarial Networks, a variant of generative adversarial networks that uses quaternion-valued inputs, weights and intermediate network representations. Quaternionic representation has the advantage of treating cross-channel information carried by multichannel signals (e.g. color images) holistically, while quaternionic convolution has been shown to be less resource-demanding. Standard convolutional and deconvolutional layers are replaced by their quaternionic variants, in both generator and discriminator nets, while activations and loss functions are adapted accordingly. We have succesfully tested the model on the task of detecting byzantine inscriptions in the wild, where the proposed model is on par with a vanilla conditional generative adversarial network, but is significantly less expensive in terms of model size (requires \(4{\times }\) less parameters). Code is available at https://github.com/sfikas/quaternion-gan.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dimitrakopoulos, P., Sfikas, G., Nikou, C.: ISING-GAN: annotated data augmentation with a spatially constrained generative adversarial network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1600–1603. IEEE (2020)
Ell, T.A., Sangwine, S.J.: Hypercomplex fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)
Giotis, A.P., Sfikas, G., Gatos, B., Nikou, C.: A survey of document image word spotting techniques. Pattern Recogn. 68, 310–332 (2017)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)
Hui, W., Xiao-Hui, W., Yue, Z., Jie, Y.: Color texture segmentation using quaternion-gabor filters. In: 2006 International Conference on Image Processing, pp. 745–748. IEEE (2006)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vision 116(1), 1–20 (2016)
Kordatos, E., Exarchos, D., Stavrakos, C., Moropoulou, A., Matikas, T.: Infrared thermographic inspection of murals and characterization of degradation in historic monuments. Constr. Build. Mater. 48, 1261–1265 (2013)
Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Trans. Signal Process. 39(9), 2101–2104 (1991)
Liao, M., Shi, B., Bai, X.: Textboxes++: a single-shot oriented scene text detector. IEEE Trans. Image Process. 27(8), 3676–3690 (2018)
Liao, M., Zhu, Z., Shi, B., song Xia, G., Bai, X.: Rotation-sensitive regression for oriented scene text detection (2018)
Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study. In: Advances in Neural Information Processing Systems (NIPS), pp. 700–709 (2018)
Nitta, T.: A quaternary version of the back-propagation algorithm. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 5, pp. 2753–2756. IEEE (1995)
Papadimitriou, K., Sfikas, G., Nikou, C.: Tomographic image reconstruction with a spatially varying gamma mixture prior. J. Math. Imaging Vis. 60(8), 1355–1365 (2018)
Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks for heterogeneous image processing. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518. IEEE (2019)
Parcollet, T., Morchid, M., Linares, G.: A survey of quaternion neural networks. Artif. Intell. Rev. 53(4), 2957–2982 (2020)
Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. arXiv preprint arXiv:1806.07789 (2018)
Raisi, Z., Naiel, M.A., Fieguth, P., Wardell, S., Zelek, J.: Text detection and recognition in the wild: a review (2020)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2016)
Rhoby, A.: Text as art? Byzantine inscriptions and their display. In: Writing Matters: Presenting and Perceiving Monumental Inscriptions in Antiquity and the Middle Ages, pp. 265–283. de Gruyter, Berlin (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Su, F., Ding, W., Wang, L., Shan, S., Xu, H.: Text proposals based on windowed maximally stable extremal region for scene text detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 376–381 (2017)
Yao, C., Bai, X., Sang, N., Zhou, X., Zhou, S., Cao, Z.: Scene text detection via holistic, multi-channel prediction (2016)
Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(07), 1480–1500 (2015)
Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 631–647 (2018)
Acknowledgement
We would like to thank Dr. Christos Stavrakos, Dr. Katerina Kontopanagou, Dr. Fanny Lyttari and Ioannis Theodorakopoulos for supplying us with the Byzantine inscription images used for our experiments.
We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.
This research has been partially co-financed by the EU and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call OPEN INNOVATION IN CULTURE, project Bessarion (T6YB\(\varPi \)-00214).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sfikas, G., Giotis, A.P., Retsinas, G., Nikou, C. (2021). Quaternion Generative Adversarial Networks for Inscription Detection in Byzantine Monuments. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-68787-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68786-1
Online ISBN: 978-3-030-68787-8
eBook Packages: Computer ScienceComputer Science (R0)