Skip to main content

Quaternion Generative Adversarial Networks for Inscription Detection in Byzantine Monuments

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12667))

Included in the following conference series:

Abstract

In this work, we introduce and discuss Quaternion Generative Adversarial Networks, a variant of generative adversarial networks that uses quaternion-valued inputs, weights and intermediate network representations. Quaternionic representation has the advantage of treating cross-channel information carried by multichannel signals (e.g. color images) holistically, while quaternionic convolution has been shown to be less resource-demanding. Standard convolutional and deconvolutional layers are replaced by their quaternionic variants, in both generator and discriminator nets, while activations and loss functions are adapted accordingly. We have succesfully tested the model on the task of detecting byzantine inscriptions in the wild, where the proposed model is on par with a vanilla conditional generative adversarial network, but is significantly less expensive in terms of model size (requires \(4{\times }\) less parameters). Code is available at https://github.com/sfikas/quaternion-gan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dimitrakopoulos, P., Sfikas, G., Nikou, C.: ISING-GAN: annotated data augmentation with a spatially constrained generative adversarial network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1600–1603. IEEE (2020)

    Google Scholar 

  2. Ell, T.A., Sangwine, S.J.: Hypercomplex fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  4. Giotis, A.P., Sfikas, G., Gatos, B., Nikou, C.: A survey of document image word spotting techniques. Pattern Recogn. 68, 310–332 (2017)

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  6. Hui, W., Xiao-Hui, W., Yue, Z., Jie, Y.: Color texture segmentation using quaternion-gabor filters. In: 2006 International Conference on Image Processing, pp. 745–748. IEEE (2006)

    Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  8. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vision 116(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kordatos, E., Exarchos, D., Stavrakos, C., Moropoulou, A., Matikas, T.: Infrared thermographic inspection of murals and characterization of degradation in historic monuments. Constr. Build. Mater. 48, 1261–1265 (2013)

    Article  Google Scholar 

  10. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Trans. Signal Process. 39(9), 2101–2104 (1991)

    Article  Google Scholar 

  11. Liao, M., Shi, B., Bai, X.: Textboxes++: a single-shot oriented scene text detector. IEEE Trans. Image Process. 27(8), 3676–3690 (2018)

    Article  MathSciNet  Google Scholar 

  12. Liao, M., Zhu, Z., Shi, B., song Xia, G., Bai, X.: Rotation-sensitive regression for oriented scene text detection (2018)

    Google Scholar 

  13. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study. In: Advances in Neural Information Processing Systems (NIPS), pp. 700–709 (2018)

    Google Scholar 

  14. Nitta, T.: A quaternary version of the back-propagation algorithm. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 5, pp. 2753–2756. IEEE (1995)

    Google Scholar 

  15. Papadimitriou, K., Sfikas, G., Nikou, C.: Tomographic image reconstruction with a spatially varying gamma mixture prior. J. Math. Imaging Vis. 60(8), 1355–1365 (2018)

    Article  MathSciNet  Google Scholar 

  16. Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks for heterogeneous image processing. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518. IEEE (2019)

    Google Scholar 

  17. Parcollet, T., Morchid, M., Linares, G.: A survey of quaternion neural networks. Artif. Intell. Rev. 53(4), 2957–2982 (2020)

    Article  Google Scholar 

  18. Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. arXiv preprint arXiv:1806.07789 (2018)

  19. Raisi, Z., Naiel, M.A., Fieguth, P., Wardell, S., Zelek, J.: Text detection and recognition in the wild: a review (2020)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2016)

    Google Scholar 

  21. Rhoby, A.: Text as art? Byzantine inscriptions and their display. In: Writing Matters: Presenting and Perceiving Monumental Inscriptions in Antiquity and the Middle Ages, pp. 265–283. de Gruyter, Berlin (2017)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Su, F., Ding, W., Wang, L., Shan, S., Xu, H.: Text proposals based on windowed maximally stable extremal region for scene text detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 376–381 (2017)

    Google Scholar 

  24. Yao, C., Bai, X., Sang, N., Zhou, X., Zhou, S., Cao, Z.: Scene text detection via holistic, multi-channel prediction (2016)

    Google Scholar 

  25. Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(07), 1480–1500 (2015)

    Article  Google Scholar 

  26. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 631–647 (2018)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Christos Stavrakos, Dr. Katerina Kontopanagou, Dr. Fanny Lyttari and Ioannis Theodorakopoulos for supplying us with the Byzantine inscription images used for our experiments.

We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.

This research has been partially co-financed by the EU and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call OPEN INNOVATION IN CULTURE, project Bessarion (T6YB\(\varPi \)-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Sfikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sfikas, G., Giotis, A.P., Retsinas, G., Nikou, C. (2021). Quaternion Generative Adversarial Networks for Inscription Detection in Byzantine Monuments. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68787-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68786-1

  • Online ISBN: 978-3-030-68787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics