Skip to main content

Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12244))

Abstract

Deep learning based side-channel analysis has seen a rise in popularity over the last few years. A lot of work is done to understand the inner workings of the neural networks used to perform the attacks and a lot is still left to do. However, finding a metric suitable for evaluating the capacity of the neural networks is an open problem that is discussed in many articles. We propose an answer to this problem by introducing an online evaluation metric dedicated to the context of side-channel analysis and use it to perform early stopping on existing convolutional neural networks found in the literature. This metric compares the performance of a network on the training set and on the validation set to detect underfitting and overfitting. Consequently, we improve the performance of the networks by finding their best training epoch and thus reduce the number of traces used by 30%. The training time is also reduced for most of the networks considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ANSSI-FR/ASCAD.

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  2. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 263–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9_18

    Chapter  Google Scholar 

  3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3. http://dl.acm.org/citation.cfm?id=648255.752740

    Chapter  Google Scholar 

  5. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org/

    MATH  Google Scholar 

  6. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x

    Article  Google Scholar 

  7. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 148–179 (2019). https://doi.org/10.13154/tches.v2019.i3.148-179

    Article  Google Scholar 

  8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  9. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018). https://doi.org/10.1007/s13389-017-0162-9

    Article  Google Scholar 

  10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  11. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 348–375 (2019). https://doi.org/10.13154/tches.v2020.i1.348-375

    Article  Google Scholar 

  12. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237

    Article  Google Scholar 

  13. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. IACR Cryptology ePrint Archive 2018/53 (2018). http://eprint.iacr.org/2018/053

  14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  15. van der Valk, D., Picek, S.: Bias-variance decomposition in machine learning-based side-channel analysis. Cryptology ePrint Archive, Report 2019/570 (2019). https://eprint.iacr.org/2019/570

  16. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36

    Article  Google Scholar 

  17. Zhou, Y., Standaert, F.-X.: Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks. J. Cryptogr. En. 10(1), 85–95 (2019). https://doi.org/10.1007/s13389-019-00209-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Robissout .

Editor information

Editors and Affiliations

A Networks

A Networks

Table 2. Network hyperparameters for \(C\!N\!N_{best}\) [13]
Table 3. Network hyperparameters for \(C\!N\!N_{BV}\) [15]

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robissout, D., Zaid, G., Colombier, B., Bossuet, L., Habrard, A. (2021). Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis. In: Bertoni, G.M., Regazzoni, F. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2020. Lecture Notes in Computer Science(), vol 12244. Springer, Cham. https://doi.org/10.1007/978-3-030-68773-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68773-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68772-4

  • Online ISBN: 978-3-030-68773-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics