Skip to main content

Anatomy and Clinical Examination of the Eye

  • Chapter
  • First Online:
Vitreoretinal Surgery
  • 893 Accesses

Abstract

During early development, the invaginated optic vesicle (optic cup) contains the primary vitreous, a vascularised tissue supplying the lens and retina (both of which have an ectodermal origin). During the third month of gestation, the primary vitreous gradually loses its vascularity and is replaced by the secondary vitreous derived mainly from the anterior retina and ciliary body. The principal remnants of the primary vitreous are Cloquet’s canal and some epipapillary gliosis. A mild exaggeration of the latter is seen in Bergmeister’s papilla (fibrous tuft) on the optic nerve head, while a Mittendorf’s dot is a primary vitreous remnant on the posterior capsule of the lens. The hyaloid artery may occasionally persist as a vascular channel growing into the central gel from the optic disc or as a glial plaque on the posterior lens capsule (see Chap. 13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefansson E, Landers MB III, Wolbarsht ML. Vitrectomy, lensectomy, and ocular oxygenation. Retina. 1982;2(3):159–66.

    Article  CAS  Google Scholar 

  2. Xu J, Heys JJ, Barocas VH, Randolph TW. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res. 2000;17(6):664–9.

    Article  CAS  Google Scholar 

  3. Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol. 2010;9(1):65–76. https://doi.org/10.1007/s10237-009-0159-0.

    Article  CAS  PubMed  Google Scholar 

  4. Stefansson E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol. 2006;51(4):364–80. S0039-6257(06)00078-6 [pii]. https://doi.org/10.1016/j.survophthal.2006.04.005.

    Article  PubMed  Google Scholar 

  5. Williamson TH, Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78(12):939–45.

    Article  CAS  Google Scholar 

  6. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82. 127/4/475 [pii]. https://doi.org/10.1001/archophthalmol.2008.621.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10. S0002-9394(04)01147-X [pii]. https://doi.org/10.1016/j.ajo.2004.09.046.

    Article  PubMed  Google Scholar 

  8. Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol. 2006;141(6):1027–32.

    Article  Google Scholar 

  9. Winter M, Eberhardt W, Scholz C, Reichenbach A. Failure of potassium siphoning by Muller cells: a new hypothesis of perfluorocarbon liquid-induced retinopathy. Invest Ophthalmol Vis Sci. 2000;41(1):256–61.

    CAS  PubMed  Google Scholar 

  10. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45(4):1041–6.

    Article  Google Scholar 

  11. Itakura H, Kishi S, Kotajima N, Murakami M. Vitreous collagen metabolism before and after vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):994–8. https://doi.org/10.1007/s00417-005-1150-9.

    Article  CAS  PubMed  Google Scholar 

  12. Schepens CL. A new ophthalmoscope demonstration. Trans Am Ophthalmol Soc. 1947;51:298–304.

    CAS  Google Scholar 

  13. Wong AD, Cooperberg PL, Ross WH, Araki DN. Differentiation of detached retina and vitreous membrane with color flow Doppler. Radiology. 1991;178(2):429–31.

    Article  CAS  Google Scholar 

  14. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  Google Scholar 

  15. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325–32.

    Article  CAS  Google Scholar 

  16. Chan A, Duker JS, Ishikawa H, Ko TH, Schuman JS, Fujimoto JG. Quantification of photoreceptor layer thickness in normal eyes using optical coherence tomography. Retina. 2006;26(6):655–60. 00006982-200607000-00011 [pii]. https://doi.org/10.1097/01.iae.0000236468.33325.74.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci. 2002;19(4):395–407.

    Article  CAS  Google Scholar 

  18. Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2003;44(4):1696–703.

    Article  Google Scholar 

  19. Chauhan DS, Marshall J. The interpretation of optical coherence tomography images of the retina. Invest Ophthalmol Vis Sci. 1999;40(10):2332–42.

    CAS  PubMed  Google Scholar 

  20. Ghazi NG, Dibernardo C, Ying HS, Mori K, Gehlbach PL. Optical coherence tomography of enucleated human eye specimens with histological correlation: origin of the outer “red line”. Am J Ophthalmol. 2006;141(4):719–26. S0002-9394(05)01106-2 [pii]. https://doi.org/10.1016/j.ajo.2005.10.019.

    Article  PubMed  Google Scholar 

  21. Sacchet D, Moreau J, Georges P, Dubois A. Simultaneous dual-band ultra-high resolution full-field optical coherence tomography. Opt Express. 2008;16(24):19434–46. 174457 [pii]

    Article  CAS  Google Scholar 

  22. Bourquin S, Seitz P, Salathe RP. Optical coherence topography based on a two-dimensional smart detector array. Opt Lett. 2001;26(8):512–4. 63959 [pii]

    Article  CAS  Google Scholar 

  23. Yasuno Y, Miura M, Kawana K, Makita S, Sato M, Okamoto F, et al. Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(1):405–13. iovs.08-2272 [pii]. https://doi.org/10.1167/iovs.08-2272.

    Article  PubMed  Google Scholar 

  24. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49(11):5103–10. iovs.08-2127 [pii]. https://doi.org/10.1167/iovs.08-2127.

    Article  PubMed  Google Scholar 

  25. Rosen RB, Hathaway M, Rogers J, Pedro J, Garcia P, Laissue P, et al. Multidimensional en-face OCT imaging of the retina. Opt Express. 2009;17(5):4112–33. 177004 [pii]

    Article  CAS  Google Scholar 

  26. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express. 2008;16(19):15149–69. 171960 [pii]

    Article  Google Scholar 

  27. Wang RK, An L. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt Express. 2009;17(11):8926–40. 179889 [pii]

    Article  CAS  Google Scholar 

  28. Tao YK, Kennedy KM, Izatt JA. Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Opt Express. 2009;17(5):4177–88. 177008 [pii]

    Article  CAS  Google Scholar 

  29. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2006;113(11):2054 e1–14. S0161-6420(06)00731-7 [pii]. https://doi.org/10.1016/j.ophtha.2006.05.046.

    Article  PubMed  Google Scholar 

  30. Wu Z, Vazeen M, Varma R, Chopra V, Walsh AC, LaBree LD, et al. Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology. 2007;114(8):1505–12. S0161-6420(06)01600-9 [pii]. https://doi.org/10.1016/j.ophtha.2006.10.061.

    Article  PubMed  Google Scholar 

  31. Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma. 2009;18(3):213–6. https://doi.org/10.1097/IJG.0b013e31817eee20. 00061198-200903000-00010 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ishikawa H, Gurses-Ozden R, Hoh ST, Dou HL, Liebmann JM, Ritch R. Grayscale and proportion-corrected optical coherence tomography images. Ophthalmic Surg Lasers. 2000;31(3):223–8.

    Article  CAS  Google Scholar 

  33. Haeker M, Abramoff M, Kardon R, Sonka M. Segmentation of the surfaces of the retinal layer from OCT images. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):800–7.

    PubMed  Google Scholar 

  34. Garvin M, Abramoff M, Wu X, Russell S, Burns T, Sonka M. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging. 2009;28(9):1436–47. https://doi.org/10.1109/TMI.2009.2016958.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sadda SR, Joeres S, Wu Z, Updike P, Romano P, Collins AT, et al. Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. Invest Ophthalmol Vis Sci. 2007;48(2):839–48. 48/2/839 [pii]. https://doi.org/10.1167/iovs.06-0554.

    Article  PubMed  Google Scholar 

  36. Hood DC, Raza AS, Kay KY, Sandler SF, Xin D, Ritch R, et al. A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT). Opt Express. 2009;17(5):3997–4003. 176995 [pii]

    Article  CAS  Google Scholar 

  37. Domalpally A, Danis RP, Zhang B, Myers D, Kruse CN. Quality issues in interpretation of optical coherence tomograms in macular diseases. Retina. 2009;29(6):775–81. https://doi.org/10.1097/IAE.0b013e3181a0848b.

    Article  PubMed  Google Scholar 

  38. Youm DJ, Kim JM, Park KH, Choi CY. The effect of soft contact lenses during the measurement of retinal nerve fiber layer thickness using optical coherence tomography. Curr Eye Res. 2009;34(1):78–83. 908191255 [pii]. https://doi.org/10.1080/02713680802579188.

    Article  PubMed  Google Scholar 

  39. Tappeiner C, Barthelmes D, Abegg MH, Wolf S, Fleischhauer JC. Impact of optic media opacities and image compression on quantitative analysis of optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(4):1609–14. 49/4/1609 [pii]. https://doi.org/10.1167/iovs.07-1264.

    Article  PubMed  Google Scholar 

  40. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50(7):3432–7. iovs.08-2970 [pii]. https://doi.org/10.1167/iovs.08-2970.

    Article  PubMed  Google Scholar 

  41. Sayanagi K, Sharma S, Yamamoto T, Kaiser PK. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology. 2009;116(5):947–55. S0161-6420(08)01143-3 [pii]. https://doi.org/10.1016/j.ophtha.2008.11.002.

    Article  PubMed  Google Scholar 

  42. Aizawa S, Mitamura Y, Baba T, Hagiwara A, Ogata K, Yamamoto S. Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye. 2009;23(2):304–8. 6703076 [pii]. https://doi.org/10.1038/sj.eye.6703076.

    Article  CAS  PubMed  Google Scholar 

  43. Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, Kusaka S, et al. Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(3):519–28. S0161-6420(08)01021-X [pii]. https://doi.org/10.1016/j.ophtha.2008.10.001.

    Article  PubMed  Google Scholar 

  44. Sano M, Shimoda Y, Hashimoto H, Kishi S. Restored photoreceptor outer segment and visual recovery after macular hole closure. Am J Ophthalmol. 2009;147(2):313–8 e1. S0002-9394(08)00618-1 [pii]. https://doi.org/10.1016/j.ajo.2008.08.002.

    Article  Google Scholar 

  45. Baba T, Yamamoto S, Arai M, Arai E, Sugawara T, Mitamura Y, et al. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008;28(3):453–8. https://doi.org/10.1097/IAE.0b013e3181571398. 00006982-200803000-00009 [pii]

    Article  PubMed  Google Scholar 

  46. Inoue M, Watanabe Y, Arakawa A, Sato S, Kobayashi S, Kadonosono K. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol. 2009;247(3):325–30. https://doi.org/10.1007/s00417-008-0999-9.

    Article  PubMed  Google Scholar 

  47. Piccolino FC, de la Longrais RR, Ravera G, Eandi CM, Ventre L, Abdollahi A, et al. The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol. 2005;139(1):87–99. S0002-9394(04)01006-2 [pii]. https://doi.org/10.1016/j.ajo.2004.08.037.

    Article  PubMed  Google Scholar 

  48. Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145(2):273–80. S0002-9394(07)00829-X [pii]. https://doi.org/10.1016/j.ajo.2007.09.019.

    Article  PubMed  Google Scholar 

  49. Murakami T, Tsujikawa A, Ohta M, Miyamoto K, Kita M, Watanabe D, et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol. 2007;143(1):171–3. S0002-9394(06)01014-2 [pii]. https://doi.org/10.1016/j.ajo.2006.08.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Williamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williamson, T.H. (2021). Anatomy and Clinical Examination of the Eye. In: Vitreoretinal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-68769-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68769-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68768-7

  • Online ISBN: 978-3-030-68769-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics