Skip to main content

2-Layer k-Planar Graphs

Density, Crossing Lemma, Relationships, and Pathwidth

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

The 2-layer drawing model is a well-established paradigm to visualize bipartite graphs. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of k-planar graphs has been considered only for \(k=1\) in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of 2-layer k-planar graphs with \(k\in \{2,3,4,5\}\). Based on these results, we provide a Crossing Lemma for 2-layer k-planar graphs, which then implies a general density bound for 2-layer k-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between k-planarity and h-quasiplanarity in the 2-layer model and show that 2-layer k-planar graphs have pathwidth at most \(k+1\).

G. Da Lozzo—The work of Giordano Da Lozzo was partially supported by MIUR grants 20157EFM5C “MODE: MOrphing graph Drawings Efficiently” and 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discret. Comput. Geom. 41(3), 365–375 (2009). https://doi.org/10.1007/s00454-009-9143-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

  3. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997). https://doi.org/10.1007/BF01196127

    Article  MathSciNet  MATH  Google Scholar 

  5. Aigner, M., Ziegler, G.M.: Probability makes counting (sometimes) easy. Proofs from THE BOOK, pp. 311–319. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57265-8_45

    Chapter  MATH  Google Scholar 

  6. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In: Hammer, P.L., Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, North-Holland Mathematics Studies, vol. 60, pp. 9–12. North-Holland (1982). http://www.sciencedirect.com/science/article/pii/S0304020808734844

  7. Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

  8. Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs with one bend per edge. Theor. Comput. Sci. 828–829, 42–54 (2020). https://doi.org/10.1016/j.tcs.2020.04.018

    Article  MathSciNet  MATH  Google Scholar 

  9. Angelini, P., Bekos, M.A., Kaufmann, M., Pfister, M., Ueckerdt, T.: Beyond-planarity: Turán-type results for non-planar bipartite graphs. In: ISAAC. LIPIcs, vol. 123, pp. 28:1–28:13. Schloss Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.28

  10. Angelini, P., Da Lozzo, G., Förster, H., Schneck, T.: \(2\)-layer \(k\)-planar graphs: Density, crossing lemma, relationships, and pathwidth (2020). https://arxiv.org/abs/2008.09329

  11. Auer, C., et al.: Outer 1-Planar Graphs. Algorithmica 74(4), 1293–1320 (2015). https://doi.org/10.1007/s00453-015-0002-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)

    Google Scholar 

  13. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/s00453-016-0200-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 344–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_27

    Chapter  Google Scholar 

  15. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry, SoCG 2017, July 4–7, 2017, Brisbane, Australia. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16

  16. Biedl, T.C., Chaplick, S., Kaufmann, M., Montecchiani, F., Nöllenburg, M., Raftopoulou, C.N.: Layered fan-planar graph drawings. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24–28, 2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.14

  17. Binucci, C., et al.: Algorithms and characterizations for 2-layer fan-planarity: From caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017). https://doi.org/10.7155/jgaa.00398

    Article  MathSciNet  MATH  Google Scholar 

  18. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  19. Capoyleas, V., Pach, J.: A Turán-type theorem on chords of a convex polygon. J. Comb. Theory Ser. B 56(1), 9–15 (1992)

    Article  Google Scholar 

  20. Chaplick, S., Kryven, M., Liotta, G., Löffler, A., Wolff, A.: Beyond outerplanarity. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 546–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_42

    Chapter  Google Scholar 

  21. Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016). https://doi.org/10.1016/j.tcs.2016.05.017

    Article  MathSciNet  MATH  Google Scholar 

  22. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2012). https://doi.org/10.1007/s00453-012-9706-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013). https://doi.org/10.1016/j.ipl.2013.01.013

    Article  MathSciNet  MATH  Google Scholar 

  24. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Didimo, W., Liotta, G.: The crossing-angle resolution in graph drawing. In: Pach, J. (ed.)Thirty Essays on Geometric Graph Theory, pp. 167–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-0110-0_10

  26. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281

    Article  Google Scholar 

  27. Dujmović, V., et al.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discret. Appl. Math. 161(7–8), 961–969 (2013). https://doi.org/10.1016/j.dam.2012.11.019

    Article  MathSciNet  MATH  Google Scholar 

  29. Erdős, P., Guy, R.: Crossing number problems. Am. Math. Mon. 80, 52–58 (1973). https://doi.org/10.2307/2319261

    Article  MathSciNet  MATH  Google Scholar 

  30. Fox, J., Pach, J.: Coloring \(K_k\)-free intersection graphs of geometric objects in the plane. In: Symposium on Computational Geometry, pp. 346–354. ACM (2008)

    Google Scholar 

  31. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. Discrete Math. 27(1), 550–561 (2013)

    Article  MathSciNet  Google Scholar 

  32. Hong, S.-H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2014). https://doi.org/10.1007/s00453-014-9890-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Hong, S., Nagamochi, H.: A linear-time algorithm for testing full outer-2-planarity. Discret. Appl. Math. 255, 234–257 (2019). https://doi.org/10.1016/j.dam.2018.08.018

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR 1403, 6184 (2014)

    Google Scholar 

  35. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013). https://doi.org/10.1002/jgt.21630

    Article  MathSciNet  MATH  Google Scholar 

  36. Leighton, F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-exchange Graph and Other Networks. MIT Press, Cambridge, MA, USA (1983)

    Google Scholar 

  37. Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Comput. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Pach, J., Radoicic, R., Tóth, G.: Relaxing planarity for topological graphs. JCDCG 2866, 221–232 (2002). https://doi.org/10.1007/978-3-540-44400-8_24

    Article  MathSciNet  MATH  Google Scholar 

  39. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16(1), 111–117 (1996)

    Article  MathSciNet  Google Scholar 

  40. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

    Article  MathSciNet  MATH  Google Scholar 

  41. Ringel, G.: Ein Sechsfarben problem auf der Kugel. Abh. Math. Sem. Univ. Hamb. 29, 107–117 (1965). https://doi.org/10.1007/BF02996313

    Article  MATH  Google Scholar 

  42. Sugiyama, K.: Graph drawing and applications for software and knowledge engineers. In: Series on Software Engineering and Knowledge Engineering, vol. 11. WorldScientific (2002). https://doi.org/10.1142/4902

  43. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. SMC-11 11(2), 109–125 (1981). https://doi.org/10.1109/TSMC.1981.4308636

  44. Suk, A., Walczak, B.: New bounds on the maximum number of edges in \(k\)-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015)

    Article  MathSciNet  Google Scholar 

  45. Valtr, P.: On geometric graphs with no \(k\) pairwise parallel edges. Discrete Comput. Geom. 19(3), 461–469 (1998)

    Article  MathSciNet  Google Scholar 

  46. Walczak, B.: Old and new challenges in coloring graphs with geometric representations. In: Archambault, D., Tóth, C.D. (eds.) Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, 17–20 September 2019, Proceedings. Lecture Notes in Computer Science, vol. 11904. Springer, Heidelberg (2019). Invited talk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Förster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelini, P., Da Lozzo, G., Förster, H., Schneck, T. (2020). 2-Layer k-Planar Graphs. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics