Skip to main content

Stochastic Gradient Descent Works Really Well for Stress Minimization

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

Stress minimization is among the best studied force-directed graph layout methods because it reliably yields high-quality layouts. It thus comes as a surprise that a novel approach based on stochastic gradient descent (Zheng, Pawar and Goodman, TVCG 2019) is claimed to improve on state-of-the-art approaches based on majorization. We present experimental evidence that the new approach does not actually yield better layouts, but that it is still to be preferred because it is simpler and robust against poor initialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandes, U.: Force-directed graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–6. Springer, New York (2014). https://doi.org/10.1007/978-3-642-27848-8_648-1

    Chapter  Google Scholar 

  2. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_11

    Chapter  MATH  Google Scholar 

  3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_6

    Chapter  MATH  Google Scholar 

  4. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_21

    Chapter  MATH  Google Scholar 

  5. Brandes, U., Pich, C.: More flexible radial layout. J. Graph Alg. Appl. 15(1), 157–173 (2011). https://doi.org/10.7155/jgaa.00221

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1 (2011). https://doi.org/10.1145/2049662.2049663

    Article  MathSciNet  MATH  Google Scholar 

  7. De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J.R., Brodeau, F., Romier, G., Van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 133–145. North Holland Publishing Company (1977). http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf

  8. Dwyer, T., Koren, Y., Marriott, K.: Constrained graph layout by stress majorization and gradient projection. Discrete Math. 309(7), 1895–1908 (2009). https://doi.org/10.1016/j.disc.2007.12.103

    Article  MathSciNet  MATH  Google Scholar 

  9. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013). https://doi.org/10.1109/TVCG.2012.299

    Article  Google Scholar 

  10. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25

    Chapter  MATH  Google Scholar 

  11. Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE Trans. Vis. Comput. Graph. 15(2), 249–261 (2009). https://doi.org/10.1109/TVCG.2008.85

    Article  Google Scholar 

  12. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989). https://doi.org/10.1016/0020-0190(89)90102-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. CRC Press, Oxford (2013)

    Google Scholar 

  14. McGee, V.E.: The multidimensional scaling of ‘elastic’ distances. Br. J. Math. Stat. Psychol. 19(2), 181–196 (1966). https://doi.org/10.1111/j.2044-8317.1966.tb00367.x

    Article  Google Scholar 

  15. Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel maxent-stress optimization. IEEE Trans. Visual Comput. Graphics 24(5), 1814–1827 (2018). https://doi.org/10.1109/TVCG.2017.2689016

    Article  MATH  Google Scholar 

  16. Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered, small-world online social media networks. J. Graph Alg. Appl. 19(2), 595–618 (2015). https://doi.org/10.7155/jgaa.00370

    Article  MathSciNet  MATH  Google Scholar 

  17. Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. J. Graph Alg. Appl. 21(5), 791–821 (2017). https://doi.org/10.7155/jgaa.00440

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, J.X., Pawar, S., Goodman, D.F.M.: Graph drawing by stochastic gradient descent. IEEE Trans. Visual Comput. Graphics 25(9), 2738–2748 (2019). https://doi.org/10.1109/TVCG.2018.2859997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik Brandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Börsig, K., Brandes, U., Pasztor, B. (2020). Stochastic Gradient Descent Works Really Well for Stress Minimization. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics